2018全球人工智能与机器人峰会——智能安全的话题引发学术界/产业界共同聚焦

发布者:何璐发布时间:2018-07-01浏览次数:2

雷锋网按:2018全球人工智能与机器人峰会(CCF-GAIR)在深圳召开已进入第二天的议程,活动现场依旧火爆。本次峰会由中国计算机学会(CCF)主办,雷锋网(公众号:雷锋网)、香港中文大学(深圳)承办,得到了深圳市宝安区政府的大力指导,是国内人工智能和机器人学术界、工业界及投资界三大领域的顶级交流盛会,旨在打造国内人工智能领域最具实力的跨界交流合作平台。


开场演讲的是来自浙江大学网络空间安全研究中心主任、IEEE Fellow任奎教授,他做了《数据安全的现状与趋势》的大会重磅报告,他是研究型学者,因此他的报告让专场具备了更多学术气息。他主要从大数据和人工智能之间的契合点来谈个人研究的经验与成果。他指出,数据安全的问题存在于数据的整个生命周期,从数据采集、流转、传输到数据使用,通常情况下他更关注的是数据的机密性、数据的完整性、数据的可用性。

浙江大学网络空间安全研究中心主任、IEEE Fellow任奎教授

机密性方面,互联网企业尤其是大公司数据泄露事件一直发生,而且发生得越来越厉害,他列举了美国Equifax用户数据泄露和德国邮政出售选民信息的案例。他认为数据有可能被直接泄露,也有可能被做进一步隐私的挖掘。任奎谈到3个技术:数据加密技术、访问控制策略技术、隐私保护技术。数据加密技术上,学术界慢慢看到工业界的现实和需求,成果在进行迁移;访问控制策略技术上,很多基于生物特征的访问控制策略(指纹、脸部识别等)飞速发展,包括从密码学的属性里面基于属性、角色的访问控制策略越来越成熟;隐私保护技术上,在过去十几年里面,一项最重要的项目就是差分隐私保护。

数据完整性方面,任何不被授权的对数据的改动都是不被允许的,都会影响数据的完整性。对数据篡改来说,人们会使用传统的技术手段,比如数据采集和传输时可以用数据分装和签名,传输时有一些丢包恢复的机制,即便有一些包被丢掉,不用同传也可以有本地数据,数据审计在数据使用的时候可以通过可验证计算等等手段来进行保护。

数据可用性方面,防DDos攻击主要技术就是本地防护、云端防护和源端防护,大家都在做这些事情,尽量把这些攻击带来的坏影响控制在最低范围内。这其中就涉及流量清洗,涉及IP合法性检查、流量限速、动态指纹识别、特定应用防护等等。

人工智能时代到底是更好还是更坏?

人工智能的时代,数据安全也面临了很多新的挑战。从数据安全来说,人工智能时代到底是更好还是更坏?他谈及三点:

 ·人工智能的发展使数据安全保障有了更强有力的工具:精确高效的信息过滤、安全多样的身份认证。

 ·人工智能生成新的加密算法:很多新型的安全形态会出现,可以用产生的算法来对数据进行加密。

 ·人工智能不只是好处:AI算法被用来去挖掘用户的隐私且带来的负面的效应也非常之大,还可以用来生成以假乱真的音频和视频, 还有大大失效的CAPTCHA检测。

 AI自身数据安全的问题方面,任奎认为有三类:

 ·训练数据安全:训练数据获取成本极高,数据较为敏感,容易被窃取。

 ·模型参数安全:模型的价值都在参数,被轻易拿走,会使巨大损失。

 ·AI应用安全:对于智能驾驶就是致命问题。对于白盒攻击,攻击者能够知道AI系统算法及参数,主要的攻击算法包括快速梯队算法、投射梯队算法等等。

演讲末,任奎感触,合规和新的数据法律给学术界和工业界都提出了非常多的挑战,数据安全依然任重而道远。

原文链接:https://www.leiphone.com/news/201806/AnhOjTADcaXry5kg.html