
The Power of Variant Analysis in
Software Vulnerability Discovery

Tielei Wang

Software vulnerability & exploit

• Vulnerability: a flaw or weakness in a system's design, implementation, or
operation and management that could be exploited to violate the system's
security policy

• Exploit: a piece of software, a chunk of data, or a sequence of commands
that takes advantage of a vulnerability to cause unintended or
unanticipated behavior within the target systems

A glance of vulnerability&exploit market

Zerodium

A glance of vulnerability&exploit market

Zerodium

A glance of vulnerability&exploit market

天府杯

A glance of vulnerability&exploit market

天府杯

A glance of vulnerability&exploit market

Apple Bug Bounty Program

So how to find vulnerabilities?

• Static Analysis

• Dynamic Analysis

• Fuzzing

• Manuel Auditing Source Code or Reverse engineering

• …

Our focus today

• Static Analysis

• Dynamic Analysis

• Fuzzing

• Manuel Auditing Source Code or Reverse engineering

• Variant analysis

Variant analysis

• Refers to the process of studying a known security bug and then looking
for code which is vulnerable in a similar way

• A concept that was widely accepted by industry researchers

• Sounds easy?

Variant analysis

• Requires:

• Deep understanding to the known vulnerabilities

• Deep understanding to the target systems

• Open and curious mind

Outline

• Introduction

• UNIX Socket Bind Race Vulnerability in XNU

• How to Apply Variant Analysis

• Conclusion

Background

• XNU is the OS kernel developed by Apple and used in iOS and macOS
products

• A UNIX socket is an inter-process communication mechanism that allows
bidirectional data exchange between processes running on the same
machine.

• We already discussed this vulnerability at Blackhat USA 2019.

Take a deep breath
A lot of C code is coming

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to write. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Connect the socket to the path. */
 connect(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Write to the socket. */
 write(sock, buf, 1024);

 close(sock);

A simple server A simple client

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

please refer to xnu source code for more details

socket

socket_common

socreate_internal

soalloc

unp_attach

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

p_fd
…

ŏ

struct filedesc proc_t

…
fd_ofiles

…

struct fileproc *
struct fileproc *
struct fileproc *

struct fileproc *

…

…
f_fglob

struct fileproc

…
fg_data

…

struct fileglob

so_usecount
ŏ

so_pcb
so_proto

struct socket

…
unp_vnode
unp_socket

…

struct unpcb

0
1
2

…
pr_unlock

pr_lock
…

struct protosw

a number of
function pointers

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

so_usecount
ŏ

so_pcb
so_proto

struct socket

…
unp_vnode
unp_socket

…

struct unpcb

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

bind

sobindlock

socket_lock

unp_bind

socket_unlock

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

bind

sobindlock

socket_lock

unp_bind

socket_unlock

Note that unp_bind is surrounded by socket_(un)lock

so it is unraceable?

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

so_usecount
ŏ

so_pcb
so_proto

struct socket

…
unp_vnode
unp_socket

…

struct unpcb

…
v_socket
VSOCK

struct vnode

Race Condition

• The creation of a vnode is time
consuming

• unp_bind has a temporary unlock

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

bind

sobindlock

socket_lock

unp_bind

socket_unlock

socket_unlock

socket_lock

vnode_create

vp->v_socket = unp->unp_socket;
unp->unp_vnode = vp;

This unlock makes bind raceable

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

bind the socket to two file paths in parallel

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, “2.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

Thread 2Thread 1

bind the socket to two file paths in parallel

we can make a socket
binding to two vnodes
(two references)

so_usecount
ŏ

so_pcb
so_proto

struct socket

…
unp_vnode
unp_socket

…

struct unpcb

…
v_socket
VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

A simple server From the kernel point of view

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

close

soo_close

soclose

A simple server From the kernel point of view

One of the vnodes will hold a dangling pointer

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

so_usecount
ŏ

so_pcb
so_proto

…
unp_vnode
unp_socket

…

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

freed memory freed memory

Trigger UAF by connecting two names From the kernel point of view

 int sock;
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Connect the socket to the path1. */
 connect(sock, (struct sockaddr *)&name1,
 SUN_LEN(&name));
 /* Connect the socket to the path2. */
 connect(sock, (struct sockaddr *)&name2,
 SUN_LEN(&name));

connect

�
unp_connect

The dangling pointer in one of the vnodes will pass into socket_lock()

so_usecount
ŏ

so_pcb
so_proto

…
unp_vnode
unp_socket

…

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

freed memory freed memory

sock = socket(AF_UNIX, SOCK_DGRAM, 0);
sock2 = socket(AF_UNIX, SOCK_DGRAM, 0);

bind(sock, (struct sockaddr *) &server1,
sizeof(struct sockaddr_un)))

bind(sock, (struct sockaddr *) &server2,
sizeof(struct sockaddr_un)))

close(sock)

connect(sock2, (struct sockaddr *) &server1, sizeof(struct sockaddr_un))
connect(sock2, (struct sockaddr *) &server2, sizeof(struct sockaddr_un))

in parallel

The race condition bug results in a UAF

The fix
• Fixed in iOS 12.2

• Still raceable, but adding extra checks to make sure two vnodes will only
keep one reference to the socket

Exploitation

Exploitation
fetch and
call a
function
pointer
through
two
deferences
to a freed
socket

Exploitation
fetch and
call a
function
pointer
through
two
deferences
to a freed
socket

save a
return
address to
the freed
socket

Binary version may be better

By controlling X8, we can easily chain
ROP/JOP gadgets

JOP/ROP does NOT work on A12
due to the PAC mitigation

(*so->so_proto->pr_lock)(so, refcount, lr_saved);

Instructions on old devices Instructions on A12 devices

(*so->so_proto->pr_lock)(so, refcount, lr_saved);

Instructions on old devices Instructions on A12 devices

Hijack control flow by controlling X8 Cannot hijack control flow by controlling X8

• Please refer to our talk at Black Hat USA 2019 for more details regarding how to
exploit this vulnerability and bypass PAC

Outline

• Introduction

• UNIX Socket Bind Race Vulnerability in XNU

• How to Apply Variant Analysis

• Conclusion

Dimensions of variant analysis
granularity of the vulnerability pattern

search space

known vulnerability

unsafe *_unlock

other lock issues

unsafe socket_unlock

same subsystem other subsystems other operating systems

Case 1: check the same patten in the same subsystem

granularity of the vulnerability pattern

search space

known vulnerability

unsafe *_unlock

other lock issues

same subsystem other subsystems other operating systems

unsafe socket_unlock

check temporary unlocks in unp_connect
 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to write. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Connect the socket to the path. */
 connect(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Write to the socket. */
 write(sock, buf, 1024);

 close(sock);

unp_connect

connect

connectit

socket_lock

soconnectlock

socket_unlock

check temporary unlocks in unp_connect

socket_unlock

unp_connect

namei

socket_lock

sonewconn

socket_unlock

…

socket_lock

…

• socket_lock and socket_unlock are called many
times

• But the developers are very caution. Every time
the socket is re-locked, unp_connect performs
checks on any change of the socket state.

Normal execution
• A new socket object is created and

inserted into the server socket’s
so_comp queue

• so_incomp: q of partially
unaccepted conns

• so_comp: q of complete
unaccepted conns

so_comp
so_incomp
ŏ

so_pcb
so_proto

server socket

new socket

The vulnerability
• The error handling code for race condition leads to a mistake

• sofreelastref is supposed to free the newly-created socket object so3, but
unfortunately it fails to deallocate the object due to incomplete flag setting

Abnormal execution with race condition detected

• A new socket object is created and
inserted into the server socket’s
so_incomp queue

• The locked socket records the
thread_t pointer

• After the thread is terminated,
the thread_t pointer is invalid

so_comp
so_incomp
ŏ

so_pcb
so_proto

server socket

locked socket

Abnormal execution with race condition detected

• Closing the server socket will lead to
cleaning the so_incomp queue

• Cleaning the so_incomp queue will try
to relock the socket object

• The relock operation will trigger the
thread_t UAF (use-after-free) issue.

• Please refer to https://
blog.pangu.io/?p=230 for more
details. Apple fixed this issue in iOS
13.7 after we reported it.

so_comp
so_incomp
ŏ

so_pcb
so_proto

server socket

locked socket

https://blog.pangu.io/?p=230
https://blog.pangu.io/?p=230
https://blog.pangu.io/?p=230

Case 2: check the same patten in other subsystems

granularity of the vulnerability pattern

search space

known vulnerability

unsafe *_unlock

other lock issues

same subsystem other subsystems other operating systems

unsafe socket_unlock

flow-divert socket UAF

• flow-divert is a subsystem in the XNU kernel for flow diversion and
network traffic management.

• the temporary unlock of the socket in function flow_divert_pcb_insert
leads to a socket UAF vulnerability

workflow
socket_lock

flow_divert_pcb_init

socket_unlock

new_pcb->so = so

MALLOC_ZONE(new_pcb

…

socket_lock

Normal Execution

ŏ
so
…

flow_divert_pcb

socket

Abnormal Execution under race condition

ŏ
so
…

flow_divert_pcb

socket

ŏ
so
…

flow_divert_pcb

two flow_divert_pcb pointing to
the same socket, eventually
leading to socket UAF

Apple fixed the
issue in iOS 14

Case 3: check similar pattens in other subsystems

granularity of the vulnerability pattern

search space

known vulnerability

unsafe *_unlock

other lock issues

same subsystem other subsystems other operating systems

unsafe socket_unlock

temporary unlocks in other subsystems
• More and more bugs caused by temporary unlocks were discovered, implying an

important bug pattern

• Race condition in VM subsystem

• CVE-2019-6205, Ian Beer

• https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html

• Race condition in IOSurface kernel extension

• CVE-2017-6979, Adam Donenfeld

• https://blog.zimperium.com/ziva-video-audio-ios-kernel-exploit/

https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html

Case 4: check relative pattens in other OS
granularity of the vulnerability pattern

search space

known vulnerability

unsafe *_unlock

other lock issues

same subsystem other subsystems other operating systems

unsafe socket_unlock

vsock race condition in the Linux kernel

• CVE-2021-26708

• by Alexander Popov

vsock race condition in the Linux kernel

• vsk->transport
pointer, is copied into
a local variable, which
is not protected by the
lock_sock

• vsk->transport may
be changed/freed by
another thread while
being used by current
thread

Don’t limit your imagination
granularity of the vulnerability pattern

search space

known vulnerability

unsafe *_unlock

other lock issues

same subsystem other subsystems other operating systems

unsafe socket_unlock

Conclusion

• People usually make similar mistakes

• Programmers usually make similar bugs

• How to automate variant analysis?

Thank you!

