The Power of Variant Analysis in
Software Vulnerability Discovery

Tielei Wang
4‘
(?*

\
Fﬁ”

(‘

4

Software vulnerability & exploit

® Vulnerability: a flaw or weakness in a system's design, implementation, or
operation and management that could be exploited to violate the system's
security policy

e Exploit: a piece of software, a chunk of data, or a sequence of commands
that takes advantage of a vulnerability to cause unintended or
unanticipated behavior within the target systems

A glance of vulnerability&exploit market

ZERODIUM Payouts for Desktops/Servers’

Up to
$1,000,000

B Windows RCE: Remote Code Execution
B macOS LPE: Local Privilege Escalation
Bl Linux/BSD | SBX: Sandbox Escape or Bypass
B Any OS VME:Virtual Machine Escape

Up to

$500,000

Up to

$250,000

Up to
$200,000

Up to
$100,000

Up to
$80,000

Up to

$50,000

Up to
$10,000

Zerodium

* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners. 2019/01 © zerodium.com

ance of vulnerability&exploit market

ZERODIUM Payouts for Mobiles’

Up to
$2,500,000
FCP: Full Chain with Persistence B I0S
RCE: Remote Code Execution Bl Android
LPE: Local Privilege Escalation B Any OS
Upto SBX: Sandbox Escape or Bypass

$2,000,000

U p o
$1,500,000

Up to
$1,000,000

Up to

$500,000

Up to

$200,000

Up to
$100,000

Zerodium

* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners. 2019/09 © zerodium.com

A glance of vulnerability&exploit market

S

IGO0 RS ==
7 ST BR

2020-11-07 13:682:657
$100000

IS R = FE IR
EM AL/ N
2020-11-07 13:53:28
$60000

3IGOiEEE=iWE
S EBR
2020-11-08
09:02:40
$40000

IGO0 IE = =m>E
8 SRR

2020-11-07 16:165:43
$60000

WD I 2 = T S E8W
EMAEHEAST/INEH
2020-11-08 13:45:50
$180000
S0 IESR=/Mm>E
5 ST

2020-11-08 13:46:10
$180000

o IH-ZEOEX
2020-11-08 10:46:24
$50000

360 IE S ==7m’E
A SRR

2020-11-08 10:46:41
$80000

CodeMaster
2020-11-08
10:465:44

$18000

SSO0CDSRC
2020-11-08 10:45:58
$18000

B¥
2020-11-08 14:44:15

$18000
=LA e g e S AR
M AELFSE/INEA

2020-11-08
14:44:43
$18000

SO0 IESR =M ’E
BF S B
2020-11-08
14:44:59
$18000

B
2020-11-08
09:03:22
$60000

IGO0 TET=/MW’E
FSEER
2020-11-08
09:04:44

$40000

B¥
2020-11-08
09:05:32

$15000
SEOE TS =7m’E
B ST B%e

2020-11-08 10:47:06
$40000

IGO0 IS = imE
5 LB

2020-117-08 09:04:13
$180000

explorer
2020-11-08 13:46:26
$8500

SQLi
2020-11-08

13:46:46

$8500

5

2020-11-08 144519
$6500

IGOoO T =ME

& S B

2020-11-08 14:45:36
$6500

SQLi
2020-11-08 13:47:09
$5000

RIFH

A glance of vulnerability&exploit market

P22y S SSSN

Ranking Team Bonus

(360 L LRIk $744500

2 9BINR EHF L= BMAR/NA $258000

3 f¥ $99500]
4 & HZNFX $50000

5 360CDSRC $18000

5 CodeMaster $18000

7 SQLi $13500

8 explorer $8500

RIFH

R >4 —_/

A glance of vulnerability&exploit market

Maximum Payout

Unauthorized access to iCloud account data on

Apple servers $100,000
Lock screen bypass $100,000
Attack via physical access
User data extraction $250,000
Unauthorized access to high-value user data $100,000
Attack via user-installed app Kernel code execution $150,000
CPU side channel attack on high-value user data $250,000
One-click unauthorized access to high-value user data $150,000
Network attack requiring user interaction
One-click kernel code execution $250,000
Zero-click radio to kernel with physical proximity $250,000
Network attack with no user interaction
Zero-click access to high-value user data $500,000

Apple Bug Bounty Program

So how to find vulnerabilities?

® Static Analysis
® Dynamic Analysis
® Fuzzing

¢ Manuel Auditing Source Code or Reverse engineering

Our focus today

® Variant analysis

Variant analysis

® Refers to the process of studying a known security bug and then looking
for code which is vulnerable in a similar way

e A concept that was widely accepted by industry researchers

® Sounds easy?

Variant analysis

® Requires:
® Deep understanding to the known vulnerabilities
® Deep understanding to the target systems

® Open and curious mind

Outline

o Introduchton
e UNIX Socket Bind Race Vulnerability in XNU
e How to Apply Variant Analysis

® Conclusion

Background

e XNU is the OS kernel developed by Apple and used in iOS and macOS
products

e A UNIX socket is an inter-process communication mechanism that allows
bidirectional data exchange between processes running on the same
machine.

e We already discussed this vulnerability at Blackhat USA 2019.

Take a deep breath
A lot of C code is coming

int sock:

struct sockaddr un name;

char buf] 13

/* Create socket from which to read. */
sock = socket(AF UNIX, SOCK DGRAM,) ;

/* Create name. */

name.sun family = AF UNIX;
strcpy(name.sun path,) ;
name.sun len = strlen(name.sun path);

/* Bind socket to the path. */
bind(sock, (struct sockaddr *)é&name,

SUN LEN(&name));

/* Read from the socket. */
read(sock, buf,) ;

close(sock);

A simple server

int sock;

struct sockaddr un name;
char buf] 1;

/* Create socket from which to write. */
sock = socket (AF UNIX, SOCK DGRAM, 0);

/* Create name. */

name.sun family = AF UNIX;
strcpy(name.sun path,) ;
name.sun_ len = strlen(name.sun path);

/* Connect the socket to the path. */
connect(sock, (struct sockaddr *)&name,

SUN LEN(&name));

/* Write to the socket. */
write(sock, buf,) ;

close(sock);

A simple client

int sock;
struct sockaddr un name;
char buf] 1;

A simple server From the kernel point of view

int sock;

struct sockaddr un name;

char buf] 1;

/* Create socket from which to read.
sock = socket(AF UNIX, SOCK DGRAM,

A simple server

* /
) 7

please refer to xnu source code for more details

socket

|—> socket common

|—> socreate internal

|—> soalloc

I—» unp_attach

From the kernel point of view

proc_t struct filedesc

struct fileproc *

_ O

struct fileproc *

I
I
i

sock; struct fileproc *
struct sockaddr un name; . :
buf [] . i struct fileproc
[4
/* Create socket from which to read. */
sock = socket(AF UNIX, SOCK DGRAM, 0); struct fileglob struct fileproc

fg_data

==

t_felob

struct socket struct unpcb

l

\4

i

so_proto

so_pcb unp_vnode

sO_usecount

struct protosw

\J

pr_lock a number of
pr_unlock function pointers

A simple server From the kernel point of view

sock;
struct sockaddr un name;

buf | 1;
/* Create socket from which to read.
sock = socket(AF UNIX, SOCK DGRAM,

A simple server

* /
) 7

struct socket

so_proto

so_pcb

struct unpcb

unp_socket

unp_vnode

SO_usecount

From the kernel point of view

sock;
struct sockaddr un name;

buf [];
/* Create socket from which to read. */
sock socket (AF UNIX, SOCK DGRAM,) ;

/* Create name. */

name.sun family AF UNIX;
strcpy(name.sun path,) ;
name.sun len strlen(name.sun path);

/* Bind socket to the path. */
bind(sock, (struct sockaddr *)é&name,
SUN LEN(&name));

A simple server

bind

|—> sobindlock
|—> socket lock
|—> unp_bind
|—> socket unlock

From the kernel point of view

Note that unp_bind is surrounded by socket_(un)lock

sock;
struct sockaddr un name;

buf [];
/* Create socket from which to read. */
sock socket (AF UNIX, SOCK DGRAM,) ;

sO it is unraceable?

bind
/* Create name. */

name.sun family AF UNIX; |_> SObinleCk
|

strcpy(name.sun path,) ;

name.sun len strlen(name.sun path); -

E B L socket_lock
/* Bind socket to the path. */
bind(sock, (struct sockaddr *)é&name,

unp_bind

SUN LEN(&name)); ‘

L» socket unlock

A simple server From the kernel point of view

/* Bind socket to the path.
bind(sock, (struct sockaddr
SUN LEN(&name));

A simple server

*/
)

name,

struct socket struct unpcb

unp_socket

so_proto

unp_vnode

so_pcb

SO_usecount

struct vnode

VSOCK

v_socket

From the kernel point of view

unp_bind(
struct unpcb xunp,

Race Condition iy skt sion

struct sockaddr_un xsoun = (struct sockaddr_un x)nam;
struct vnode xvp, *xdvp;

struct vnode_attr va;

vfs_context_t ctx = vfs_context_current();

int error, namelen;

struct nameidata nd;

struct socket *so = unp—->unp_socket;

char buf[SOCK_MAXADDRLEN];

(nam->sa_family != 0 && nam->sa_family != AF_UNIX) {
(EAFNOSUPPORT) ;

® The creation of a vnode is time
Consuming

(unp—>unp_vnode != NULL)
(EINVAL);

((so—>so_state & (SS_CANTRCVMORE | SS_CANTSENDMORE)) ==
(SS_CANTRCVMORE | SS_CANTSENDMORE))

e unp_bind has a temporary unlock (EINVAL)

namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
(namelen <= 0)
(EINVAL);

(namelen >= SOCK_MAXADDRLEN)
(EINVAL);
bcopy(soun->sun_path, buf, namelen);
buf [namelen] = 0;

socket _unlock(so, 0);

sock;
struct sockaddr un name;

buf [];
/* Create socket from which to read. */
sock socket (AF UNIX, SOCK DGRAM,) ;

/* Create name. */

name.sun family AF UNIX;

strcpy (name.sun path,) ;
name.sun_ len strlen(name.sun path);

/* Bind socket to the path. */
bind(sock, (struct sockaddr *)é&name,
SUN LEN(&name));

A simple server

bind

This unlock makes bind raceable

L» sobindlock

L» socket lock
L> unp_bind

|
—» socket unlock

> vnode create

» socket lock

_» Vp->v_socket = unp->unp_socket;
unp->unp_vnode = vp;

_» socket unlock

From the kernel point of view

int sock;
struct sockaddr un name;

char buf] 1;
/* Create socket from which to read. */

sock = socket(AF UNIX, SOCK DGRAM, 0);

/* Create name. */

name.sun family = AF UNIX;
strcpy(name.sun path,) ;
name.sun len = strlen(name.sun path);

/* Bind socket to the path. */
bind(sock, (struct sockaddr *)é&name,
SUN LEN(&name));

Thread 1

/* Create name. */
name.sun family = AF UNIX;

strcpy(name.sun path,) ;
name.sun len = strlen(name.sun path);

/* Bind socket to the path. */

bind(sock, (struct sockaddr *)é&name,
SUN LEN(&name)) ;

Thread 2

bind the socket to two file paths in parallel

struct socket struct unpcb

we can make a socket
unp_socket blndlng to two vnodes
unp_vnode (two references)

>

so_proto

so_pcb

SO_usecount

struct vnode

V50CK

v_socket

struct vnode

V50OCK

v_socket

bind the socket to two file paths in parallel

close

I—» soo close

I—» soclose

close(sock);

A simple server From the kernel point of view

sock;
struct sockaddr un name;
buf |];

/* Create socket from which to read. */
sock socket (AF UNIX, SOCK DGRAM,) ;

/* Create name. */

name.sun family AF UNIX;

strcpy (name.sun path,) ;
name.sun_ len strlen(name.sun path);

/* Bind socket to the path. */
bind(sock, (struct sockaddr *)&name,

SUN LEN(&name)) ;

/* Read from the socket. */
read(sock, buf,) ;

close(sock);

A simple server

One of the vnodes will hold a dangling pointer

freed memory freed memory

unp_socket

so_proto

unp_vnode

sO_pcb

SO_usecount

struct vnode

struct vnode

VSOCK

v_socket

From the kernel point of view

int sock;
sock = socket(AF UNIX, SOCK DGRAM,) ;

/* Connect the socket to the pathl. */

connect(sock, (struct sockaddr *)&namel,
SUN LEN(&name)) ;

/* Connect the socket to the path2. */

connect(sock, (struct sockaddr *)&name?2,
SUN LEN(&name));

Trigger UAF by connecting two names

connect

L,

|—> unp_connect

From the kernel point of view

freed memory freed memory

int
unp_connect(struct socket *so, struct sockaddr xnam, __unused proc_t p)

so_proto unp_socket {

unp_vnode

so_pcb

NDINIT(&nd, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE,
CAST_USER_ADDR_T(buf), ctx);
error = namei(&nd);
SO_usecount (error) {
socket_lock(so, 0);
(error);

}
nameidone(&nd);
vp = nd.ni_vp;
struct vhode (vp—>v_type != VSOCK) {
error = ENOTSOCK;
socket_lock(so, 0);
out;

(vp—>v_socket == 0) {
lck_mtx_unlock(unp_connect_lock);
error = ECONNREFUSED;

socket_lock(so, 0);
struct vnode e

VSOCK g

socket_lock(vp->v_socket, 1); /* Get a reference on the listening socket x/

v_socket

The dangling pointer in one of the vnodes will pass into socket_lock() .“

sock = socket(AF_UNIX, SOCK_DGRAM, 0);]

sockZ = socket(AF \TIX SOCK DGRAM O) *

|

T m paralle

PRI

| bmd(sock (struct sockaddr *) &serverl , bmd(sock (struct sockaddr *) &serverZ |

sizeof(struct sockaddr un))) | sizeof(struct sockaddr_un)))

[

i connect(sockZ (struct sockaddr *) &serverl 51zeof(struct sockaddr un))

~connect(sock?, (struct sockaddr *) &server2, sizeof(struct sockaddr_un))

The race condition bug results in a UAF

The fix

® Fixed in 105 12.2

e Still raceable, but adding extra checks to make sure two vnodes will only
keep one reference to the socket

1072 fg 1116 socket lock(so, 0);
¥ 1117

1118 if (unp->unp_vnode != NULL) {
1119 vnode put(vp); /* drop the iocount */

1120 return EINVAL;

1121
¥ 1122
| ér;o;v¥vn6dé;réf(bb); l/;hg;invavlonggeEmAréFérenééﬁ*/
if (error) {

vnode_put(vp); /* drop the iocount */

return error;

vp->v_socket = unp->unp _ socket;

unp->unp_vnode = vp;

unp->unp_addr = (struct sockaddr_un *)dup sockaddr(nam, 1);

vnode put(vp); /* drop the iocount */

return (0);

return 0;

Exploitation

void
socket lock(struct socket *xso, int refcount)

{

void xLlr_saved;
lr_saved = builtin_return_address(0);

(so—>so_proto—>pr_lock) {
(xso—>so_proto—>pr_lock) (so, refcount, 1lr_saved);
s {
MORE_LOCKING DEBUG
LCK_MTX_ASSERT(so—>so_proto—>pr_domain->dom_mtx,
LCK_MTX_ASSERT_NOTOWNED) ;

Llck_mtx_lock(so—->so_proto—>pr_domain—>dom_mtx) ;
(refcount)
S0—>S0_usecount++;

so—>lock lr[so-—>next lock 1r] = 1lr_saved;

so—>next _lock 1r = (so->next _lock 1lr+1) % SO _LCKDBG_MAX;

Exploitation

vold
socket lock(struct socket *xso, int refcount)
fetch and {
call a void *xLlr_saved;
function lr_saved = __builtin_return_address(0);
pointer (so—>so_proto—->pr_lock) {
through (xso—>so_proto—>pr_lock) (so, refcount, lr_saved);
) {
two MORE_LOCKING_ DEBUG
LCK_MTX_ASSERT(so—>so_proto—>pr_domain->dom_mtx,
deferences LCK_MTX_ASSERT NOTOWNED) ;
to a freed

Llck_mtx_lock(so—->so_proto—>pr_domain—>dom_mtx) ;
socket (refcount)
S0—>S0_usecount++;
so—>lock 1lr[so—>next lock 1r] = 1lr_saved;
so—>next _lock 1r = (so->next _lock 1lr+1) % SO _LCKDBG_MAX;

Exploitation

volid
socket lock(struct socket *xso, int refcount)
fetch and
call a void xLlr_saved;
function lr saved = builtin _return_address(0):
pointer (so—>so_proto—>pr_lock) {
(xso—>so_proto—>pr_Llock) (so, refcount, lr_saved);
through ! ¢ oo-P P save a
LCK_MTX_ASSERT(so—>so_proto—>pr_domain->dom_mtx,
deferences LCK_MTX_ASSERT_NOTOWNED) ; address to
to a freed Lck_mtx_lock(so—>so_proto—>pr_domain->dom_mtx) ; the freed
socket (refcount) socket

S0—>S0_usecount++;
so—>lock_1lr[so—->next_lock _1lr] = 1lr_saved;
so—>next_lock _1r = (so—>next_lock _1lr+1) % SO_LCKDBG_MAX;

Binary version may be better

, [X21,#0x18]

, [X9,#0x68]

, loc FFFFFFF007BE4C18
, #0

; X21

By controlling X8, we can easily chain
ROP/JOP gadgets

OP /ROP does NOT work on A12
due to the PAC mitigation

(*so->so_proto->pr_lock)(so, refcount, Ir_saved);

Instructions on old devices Instructions on A12 devices

X9, [X21,#0x18]
XB, [X9,#0x68]

X8, loc FFFFFFF007BE4C18
Wl, #0

LDR X9, [X20,#0x18]
[X9,#0x68]
loc FFFFFFF007F805E4
#0

X0, X21

(*so->so_proto->pr_lock)(so, refcount, Ir_saved);

Instructions on old devices Instructions on A12 devices

X9, [X21,#0x18]

XB, [X9,#0x68]

X8, loc FFFFFFF007BE4C18
Wl, #0

LDR X9, [X20,#0x18]
[X9,#0x68]
loc FFFFFFF007F805E4
#0

X0, X21 X20

' 0% it i 4 on D i ieaks & = S e L SN

Hijack control flow by controlling X8 Cannot hijack control flow by controlling X8

e Please refer to our talk at Black Hat USA 2019 for more details regarding how to
exploit this vulnerability and bypass PAC

Outline

Hy—H XN

e How to Apply Variant Analysis

® Conclusion

Dimensions of variant analysis

granularity of the vulnerability pattern

other lock issues

unsafe *_unlock

unsafe socket unlock

search space

same subsystem other subsystems other operating systems

Case 1: check the same patten in the same subsystem

granularity of the vulnerability pattern

other lock issues

unsafe *_unlock

unsafe socket unlock ‘

search space

same subsystem other subsystems other operating systems

check temporary unlocks in unp_connect

int sock:
struct sockaddr un name;

char buf] connect
/* Create socket from which to write. */
sock = socket (AF UNIX, SOCK DGRAM, 0); I_ﬁ.> .
connectit
/* Create name. */ I_>
name.sun family = AF UNIX; socket lock
strcpy(name.sun path,) ; i
name.sun len = strlen(name.sun path); SOCOnneCﬂOCk

/* Connect the socket to the path. */

connect (sock, (struct sockaddr *)&name, I—V un COnneCt
SUN_LEN (&name)) ; I)_-

/* Write to the socket. */ SOCket_unlOCk

write(sock, buf,) ;

close(sock);

check temporary unlocks in unp_connect

unp_connect

oy oy v oy 4

® socket_lock and socket_unlock are called many
socket unlock times

nameil
e But the developers are very caution. Every time
socket_lock the socket is re-locked, unp_connect performs
checks on any change of the socket state.

/*
* Check was connected we were trying to
Socket_unlock * get the locks order.
* XXX - probably shouldn't an SOCK_DGRAM
X/
sonewconn ((so->so0_state & SS_ISCONNECTED) != 0) {

/* Check again 1f the socket state changed when i1ts lock was released */
socket_lock Ceomsen < e

)

® A new socket object is created and
inserted into the server socket’s
SO_comp queue

® so_incomp: q of partially
unaccepted conns

® so_comp: g of complete
unaccepted conns

Normal execution

server socket

SO_proto

sO_pcb

SO_1ncomp

SO_comp

> new socket

The vulnerability

® The error handling code for race condition leads to a mistake

Il
—
e

S
-
S
-

/* Check again 1f the socket state changed when i1ts lock was released */
((so-> &) 1= 0) {

e sofreelastref is supposed to free the newly-created socket object so3, but
unfortunately it fails to deallocate the object due to incomplete flag setting

Abnormal execution with race condition detected

® A new socket object is created and
inserted into the server socket’s
SO_lncomp queue

® The locked socket records the
thread_t pointer

o After the thread is terminated,
the thread_t pointer is invalid

server socket

SO_proto

sO_pcb

SO_1incomp

SO_comp

—

4 locked socket

Abnormal execution with race condition detected

e Closing the server socket will lead to server socket

cleaning the so_incomp queue

e Cleaning the so_incomp queue will try SO_proto

to relock the socket object s0_pcb

® The relock operation will trigger the s0_incomp

thread t UAF (use-after-free) issue. s0_comp

® Please refer to https:/ /
blog.pangu.io/?p=230 for more
details. Apple fixed this issue in iOS
13.7 atter we reported it.

—

4 locked socket

https://blog.pangu.io/?p=230
https://blog.pangu.io/?p=230
https://blog.pangu.io/?p=230

Case 2: check the same patten in other subsystems

granularity of the vulnerability pattern

other lock issues

unsafe *_unlock

unsafe socket unlock ‘

search space

AN
» same subsystem other subsystems other operating systems

flow-divert socket UAF

o flow-divert is a subsystem in the XNU kernel for flow diversion and
network traffic management.

e the temporary unlock of the socket in function flow_divert_pcb_insert
leads to a socket UAF vulnerability

workflow

I—» socket lock
I—» flow_divert_pcb_init

MALLOC_ZONE(new_pcb

new_pcb->s0 = so

socket unlock

Ceee e

socket lock

Normal Execution

flow_divert_pcb

SO

e

Abnormal Execution under race condition

flow_divert_pcb two flow divert pcb pointing to
the same socket, eventually
leading to socket UAF

e

A

flow_divert_pcb

Apple fixed the
i1ssue 1n 10S 14

Case 3: check similar pattens in other subsystems

granularity of the vulnerability pattern

other lock issues

unsafe *_unlock

unsafe socket unlock

search space

AN
» same subsystem other subsystems other operating systems

temporary unlocks in other subsystems

® More and more bugs caused by temporary unlocks were discovered, implying an
important bug pattern

® Race condition in VM subsystem

o CVE-2019-6205, Ian Beer

® https:/ /googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html

® Race condition in IOSurface kernel extension
e CVE-2017-6979, Adam Donenteld

® https:/ /blog.zimperium.com/ ziva-video-audio-ios-kernel-exploit/

https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html

Case 4: check relative pattens in other OS

granularity of the vulnerability pattern

other lock issues ‘

unsafe *_unlock

unsafe socket unlock

search space

same subsystem other subsystems other operating systems

vsock race condition in the Linux kernel

about summary refs log tree | commit diff stats

author Alexander Popov <alex.popov@linux.com> 2021-02-01 11:47:19 +0300
committer Jakub Kicinski <kuba@kernel.org> 2021-02-01 19:54:30 -0800
commit c518adafa39f37858697ac9309c6cf1805581446 (patch)

tree 3210£168d0994023031222b8cce28bc546e3137a

parent 938e0fcd3253efdef8924714158911286d08cfel (diff)

o CVE—2021—26708 download 1linux-c518adafa39f37858697ac9309c6cf1805581446.tar.gz

vsock: fix the race conditions in multi-transport support
® by Alexander POPOV There are multiple similar bugs implicitly introduced by the

commit cOcfa2d8a788fcf4 ("vsock: add multi-transports support") and
commit 6a2c0962105ae8ce ("vsock: prevent transport modules unloading").

The bug pattern:
[1] vsock sock.transport pointer is copied to a local variable,
[2] lock sock() 1is called,
[3] the local variable is used.
VSOCK multi-transport support introduced the race condition:
vsock sock.transport value may change between [1] and [2].

vsock race condition in the Linux kernel

® vsk->transport
pointer, is copied into
a local variable, which

diff --git a/net/vmw_vsock/af vsock.c b/net/vmw_vsock/af vsock.c

. index bl2d3a3222428..6894£f21dc1475 100644
15 nOt prOteCted by the --- a/net/vmw_vsock/af vsock.c
+++ b/net/vmw vsock/af vsock.c
1()(:1(_ E;()(:L<. @@ -1014,9 +1014,12 @@ static _ poll t vsock poll(struct file *file, struct socket *sock,

mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;

} else if (sock->type == SOCK STREAM) {
const struct vsock transport *transport = vsk->transport;
const struct vsock transport *transport;

® vsk->transport may
lock sock(sk);
be Changed/freed by transport = vsk->transport;
another thread while

being used by current
thread

Don’t limit your imagination

other lock issues

unsafe * _unlock

unsafe socket unlock

search space

same subsystem other subsystems other operating systems

Conclusion

® People usually make similar mistakes
® Programmers usually make similar bugs

® How to automate variant analysis?

Thank you!

