
操作系统的静态分析与缺陷检测

白家驹
清华大学操作系统实验室
https://baijiaju.github.io/

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

2

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

3

Operating system (OS)
 Operating system is the fundamental computer software

 Provide services for user-level applications
 Manage computer resources (such as memory and CPUs)
 Control hardware devices (such as USB and network devices)

4

Operating system (OS)
 Key parts in an operating system

 Filesystems: ext2, ext4, ntfs, btrfs, …
 Network stacks: ipv4, ipv6, tcp, udp, …
 Security modules: tomoyo, yama, smack, bpf, …
 Device drivers: USB, Ethernet, wireless, disk, …
 ……

5

Operating system (OS)
 Operating systems are not reliable and safe as expected

 In 2016, 523 new vulnerabilities are reported in the Android OS
 In 2017, >2000 new real bugs are reported in the Linux kernel

6

Static analysis
 Static analysis is a common method of program analysis

 Analyze program code without actual running
 High code coverage
 Easy to use and deploy

7

int func(int arg) {
 int a, b, c;
 a = 0; b = 5;
 if (arg > 0)
 b = a;
 if (arg > 5)
 c = arg / b; // DIV ZERO
 else
 c = arg / 4;
 return c;
}

Scan and analyze
the code

Bug report

Static analysis
 Key techniques in static analysis

 Inter-/intra-procedural analysis
 Flow-sensitive/-insensitive analysis
 Context-sensitive/-insensitive analysis
 Field-sensitive/-based/-insensitive analysis
 Array-sensitive/-insensitive analysis
 Alias analysis and function-pointer analysis
 ……

8

Static analysis of operating system
 Challenges

 Inter-procedural analysis for large-scale code
 Function-pointer analysis
 Identification of concurrent function pairs
 Concurrency-problem detection
 Hardware-access checking
 Code-path validation to reduce false positives
 ……

9

Our approaches
 DSAC: detecting sleep-in-atomic-context bugs

 Inter-procedural analysis for large-scale code
 Function-pointer analysis

 DCUAF: detecting concurrency use-after-free bugs
 Identification of concurrent function pairs
 Concurrency-problem detection

 SADA: detecting unsafe DMA accesses
 Hardware-access checking
 Code-path validation to reduce false positives

10

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

11

Background
 Atomic context

 A special OS kernel state
 A CPU core is monopolized to execute code without interruption
 Protect resources from concurrent accesses

 Common examples of atomic context

 Code is executed while holding a spinlock
 Code is executed in an interrupt handler

12

Motivation
 SAC (Sleep in Atomic Context) bug

 Sleeping in atomic context is not allowed
 SAC bug can occasionally cause a system hang or crash when

they are triggered at runtime

13

Z
 Z
 Z

Motivation
 Why can a SAC bug cause a hang or crash?

14

Interrupt Handler

SLEEP

acquire lock

release lock

acquire lock

release lock

acquire lock

release lock

Thread A Thread B Thread C

CPU0 is
spinning

CPU1 is
spinning

No CPU is available
to release the lock

Lock is not available,
continue spinning

State1

State2

State3 State4

State5

State5

DEADLOCK!!!

Instruction N

State1

Instruction N+1

Current Running Thread

State2

SLEEP
State3

State4
How to wake up?
KERNEL PANIC!!!

Hardware
Interrupt

Sleeping while holding a spinlock Sleeping in an interrupt handler

Motivation
 Example SAC bug

 First introduced in Linux 2.6.0 (Dec 2003)
 First fixed in Linux 2.6.36 (Oct 2010)

 15

Motivation
 Why do SAC bugs still occur in the Linux kernel?

 Determining whether an operation can sleep requires OS-specific
knowledge

 SAC bugs occasionally cause problems in real execution and are
hard to reproduce at runtime

 Inter-procedural properties and function pointers need to be
carefully considered

 16

Most known SAC bugs are found by manual
inspection or runtime failures…

Challenges
 C1: Accuracy and efficiency in code analysis

 Linux kernel code base is large and complex
 Flow-sensitive inter-procedural analysis is expensive

 C2: Handling function-pointer calls
 How to identify real functions referenced by function-pointer calls?

 C3: Dropping repeated and false bugs
 How to reduce repeated reports and false positives?

17

Techniques
 C1: Accuracy and efficiency in code analysis

=> Summary-based flow-sensitive analysis
 C2: Handling function-pointer calls

=> Connection-based function-pointer analysis
 C3: Dropping repeated and false bugs

=> Path-check method

18

T1: Summary-based analysis
 Identify code that may be executed in atomic context

 Start from each spin-lock function call
 Start from the entry of each interrupt handling function
 Maintain an interrupt handling flag, held locks and code paths

 Using function summary to reduce repeated analysis
 Function location
 Held locks and interrupt handling flag when the function is handled
 Sleep-able function call in the function
 ……

19

Example

20

Example

21

T2: Connection-based analysis
 Collect candidate functions of function-pointer call

 Handle function-pointer assignments
 Perform field-based analysis

 Drop false candidate functions using connections
 Link-information connection
 Function-call connection

22

Link-information connection
 Handle the situations for the same kernel module

23

Function-call connection
 Handle the situations for different kernel modules

24

T3: Path-check method
 Drop repeated reports

 Check the locations of analysis entry and sleep-able function call
 Drop false positives

 Check path conditions
 Check key function calls and macros

25

DSAC approach
 Integrate the three key techniques
 Detect SAC bugs in the Linux kernel
 Perform static analysis on LLVM bytecode

26

Evaluation
 Code analysis

27

Description
Linux 3.17.2 Linux 4.17

DSAC DSAC_noptr DSAC DSAC_noptr

Summary-based
analysis

Handled functions 51K 37K 65K 47K
Function summaries 79K 52K 103K 69K

Function-pointer
analysis

Function-pointer calls 14K - 17K -
Handled calls 10K 11K
Candidate functions 113K - 138K -
Identified functions 40K - 45K -

Bug detection
Found bugs 891 464 1159 615
Real bugs 805 432 1068 564

Time usage 78m 40m 97m 52m

Evaluation
 Linux 3.17.2

 Find 805 real bugs, with a false positive rate of 9.7%
 171 real bugs have been fixed in Linux 4.17
 Find more 341 real bugs using function-pointer analysis

 Linux 4.17
 Find 1068 real bugs, with a false positive rate of 7.9%
 Send 300 randomly-selected bugs to kernel developers, and 220 of

them have been confirmed
 Find more 505 real bugs using function-pointer analysis

28

Evaluation
 Bug distribution

 Overall 77% of all bugs occur in drivers
 Network, SCSI and staging drivers together have >50% of the

bugs in drivers

29

Comparison
 Coccinelle BlockLock checker [ASPLOS’11+TOCS’14]

 Both check Linux 2.6.33
 DSAC makes allyesconfig of x86, but BlockLock does not need it
 BlockLock: 37 bugs related to x86, and 26 of them are real
 DSAC: 772 bugs, and 719 of them are real
 59 real bugs found by DSAC are equivalent to 26 real bugs found by

BlockLock
 DSAC finds 660 more real bugs

 30

Conclusion
 DSAC approach to detect SAC bugs in the Linux kernel

 Summary-based flow-sensitive analysis
 Connection-based function-pointer analysis
 Path-check method

 Find 1068 new real bugs in the Linux kernel
 DSAC finds many bugs missed by existing tools
 Published in ACM TOCS’20

 Effective Detection of Sleep-in-Atomic-Context Bugs in the Linux
Kernel. Jia-Ju Bai, et al.

31

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

32

Background
 Use-after-free bugs in device drivers

 Reliability: may cause system crashes
 Security: can be exploited to attack the operating system

33

Background
 Sequential use-after-free bug

 Concurrency use-after-free bug

34

1. void DriverFunc1(struct device *pdev) {
2. kfree(pdev->buf);
3. pdev->buf = kmalloc(...)
4. pdev->buf->last = NULL;
5. }

1. void DriverFunc2(struct device *pdev) {
2. spin_lock(...);
3. pdev->buf->first = NULL;
4. spin_unlock(...);
5. }

Thread 1 Thread 2

1. void DriverExit(struct device *pdev) {
2. kfree(pdev->buf);
3. pdev->num = 0;
4. pdev->buf->last = NULL;
5. }

Thread 1

Example
 Linux r8a66597 USB driver

35

FILE: linux-4.19/drivers/usb/host/r8a66597-hcd.c
2304. static const struct hc_driver r8a66597_hc_driver = {

2320. .urb_enqueue = r8a66597_urb_enqueue,

2322. .endpoint_disable = r8a66597_endpoint_disable,

2336. }

Lifetime: Jul. 2007 ~ Dec.2018
Fix Commit: c85400f886e3

FILE: linux-4.19/drivers/usb/host/r8a66597-hcd.c
1885. static int r8a66597_urb_enqueue(...) {

1895. spin_lock_irqsave(&r8a66597->lock, flags);

1905. if (!hep->hcpriv) // READ

1951. spin_unlock_irqrestore(&r8a66597->lock, flags);
1952. return ret;
1953. };

FILE: linux-4.19/drivers/usb/host/r8a66597-hcd.c
1980. static void r8a66597_endpoint_disable(...) {

1995. kfree(hep->hcpriv); // FREE

2000. spin_lock_irqsave(&r8a66597->lock, flags);

2010. spin_unlock_irqrestore(&r8a66597->lock, flags);
2011. }

Study of Linux kernel commits
 Use-after-free commits

 Jan.2016 ~ Dec.2018 (3 years)

36

Time Commits Drivers Concurrency Tool use

2016 (Jan - Dec) 186 111 42 (38%) 26

2017 (Jan - Dec) 478 205 87 (42%) 49

2018 (Jan - Dec) 285 145 66 (46%) 52

Total 949 461 195 (42%) 127

42% of driver commits fixing use-after-free bugs
involve concurrency

Study of Linux kernel commits
 Tool use

 Tools mentioned in driver commits

37

Tool use KASAN Syzkaller Coverity Coccinelle LDV

Type Runtime Runtime Static Static Static

Commit 92 28 4 2 1

Concurrency 38 18 0 0 0

It is important to explore static analysis to detect
concurrency use-after-free bugs in device drivers!

Challenges
 Identify driver functions that can be concurrently executed

 Poor documentation about concurrency
 Many functions defined in the driver code

 Accuracy and efficiency of code analysis
 Large size of the Linux driver code base
 Many function calls across different source files

 38

Approach
 DCUAF

 Automated and effective approach of detecting concurrency
use-after-free bugs in device drivers

 LLVM-based static analysis

39

Approach
 Basic idea

 Step1: Use a local-global strategy to identify concurrent
 function pairs from driver source code

 Step2: Use a summary-based lockset analysis to detect
 concurrency use-after-free bugs.

40

Local-global strategy
 Driver interfaces are the entries of a device driver

 Kernel-driver interfaces
 Interrupt handler interfaces

 Driver concurrency is often determined by the concurrent
execution of driver interfaces

41

Local-global strategy
 Examples

 Linux dl2k and ne2k-pci drivers

> “.ndo_start_xmit” can be concurrently executed with “interrupt handler”
> “.ndo_open” is never concurrently executed with “.ndo_close”

42

interrupt_handler interrupt_handler

Local-global strategy
 How to extract concurrent function pairs?

 Local stage: analyze the source code of each driver
 Global stage: statistically analyze the local results of all drivers

43

Local stage
 S1: identify possible concurrent function pairs

 Compare lock-acquiring function calls
 S2: drop possibly false concurrent function pairs

 Collect “ancestors” of the two functions in call graph
 Drop pairs of functions that have a common “ancestor”

 S3: extract local concurrent interface pairs
 Identify and record driver interface assignments related to concurrent

function pairs

44

Global stage
 S1: gather local concurrent interface pairs of all drivers
 S2: statistically extract global concurrent interface pairs

 Ratio: concurrent pairs / all pairs

 S3: identify concurrent function pairs in each driver

 45

Driver Interface 1 Driver Interface 2 Pair Concurrent
spi_driver.probe spi_driver.remove 227 3

file_operations.open file_operations.close 462 3

hc_driver.urb_enqueue hc_driver.endpoint_disable 16 9

Interrupt handler snd_pcm_ops.trigger 49 25






Summary-based lockset analysis
 Context-sensitive and flow-sensitive lockset analysis

 Maintain locksets
 Field-based alias analysis

 Identify the same locks
 Summary-based analysis

 Reuse the results of already analyzed functions
 Procedure

 S1: collect the lockset of each variable access
 S2: check the held locksets of the variable accesses to find bugs

 46

Evaluation
 Local-global strategy

47

Description Linux 3.14 Linux 4.19

Code handling
Source files (.c) 7957 13100
Source code lines 5.1M 7.9M

Local stage
Dropped function pairs 61.4K 99.8K
Remaining function pairs 40.7K 67.8K

Global stage
Global concurrent interface pairs 694 1497
Concurrent function pairs 15.6K 69.5K
Time usage 15m 18m

		Description

		Linux 3.14

		Linux 4.19

		Code handling

		Source files (.c)

		7957

		13100

		

		Source code lines

		5.1M

		7.9M

		Local stage

		Dropped function pairs

		61.4K

		99.8K

		

		Remaining function pairs

		40.7K

		67.8K

		Global stage

		Global concurrent interface pairs

		694

		1497

		

		Concurrent function pairs

		15.6K

		69.5K

		Time usage

		15m

		18m

Evaluation
 Bug detection

48

Description Linux 3.14 Linux 4.19
Detected (real / all) 526 / 559 640 / 679
Confirmed / reported - 95 / 130
Time usage 9m 10m

Some confirmed bugs:
• https://github.com/torvalds/linux/commit/7418e6520f22
• https://github.com/torvalds/linux/commit/2ff33d663739
• https://github.com/torvalds/linux/commit/c85400f886e3

		Description

		Linux 3.14

		Linux 4.19

		Detected (real / all)

		526 / 559

		640 / 679

		Confirmed / reported

		-

		95 / 130

		Time usage

		9m

		10m

Evaluation
 False positives

 Alias analysis may incorrectly identify the same locks
 Flow-sensitive analysis does not validate path conditions
 ……

 False negatives
 Function-pointer analysis is not performed
 Other kinds of synchronization are neglected
 ……

49

Conclusion
 Concurrency use-after-free bugs are often hard to detect
 DCUAF: automated and effective

 Local-global strategy of extracting concurrent function pairs
 Summary-based lockset analysis

 Find hundreds of new real bugs in Linux device drivers
 Published in USENIX ATC’19

 Effective Static Analysis of Concurrency Use-After-Free Bugs in
Linux Device Drivers. Jia-Ju Bai, et al.

50

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

51

Background
 DMA is widely used in modern device drivers

 Direct data transfer between hardware registers and system memory
 Perform data transfer without CPU involvement

52

DMA access
 Basic steps

 S1: Create a DMA buffer
 S2: Perform a DMA access like a regular variable access
 Read a DMA buffer: data = dma_buf->data;
 Write a DMA buffer: dma_buf->data = data;
 S3: Delete a DMA buffer

53

DMA type
 Streaming DMA buffer

 It is asynchronously available to both the CPU and hardware device
 The driver needs to explicitly synchronize the data between

hardware registers and CPU cache
 Each DMA access is relatively cheap

 Coherent DMA buffer
 It is simultaneously available to both the CPU and hardware device
 The driver does not need to explicitly synchronize the data between

hardware registers and CPU cache
 Each DMA access is relatively expensive

54

Security risks of DMA access
 Streaming DMA access

 After a streaming DMA buffer is created, the driver should not access
the content of this buffer, until this buffer is unmapped

 The driver is allowed to access buffer content during synchronization
with hardware registers and CPU cache

 Security risks of violations
 Inconsistent DMA access
 Data inconsistency between hardware registers and CPU cache

55

Example
 Inconsistent DMA access in the Linux rtl8192ce driver

 Introduced in Linux 4.4 (released in Jan. 2016)
 Fixed in Oct. 2020 by us

56

FILE: linux-5.6/drivers/net/wireless/realtek/rtlwifi/rtl8192ce/trx.c
522. void rtl92ce_tx_fill_cmddesc(...) {

 // Streaming DMA mapping
531. dma_addr_t mapping = pci_map_single(..., skb->data, ...);

535. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data);
536 fc = hdr->frame_control; // Inconsistent DMA access!

584. }

Security risks of DMA access
 Coherent DMA access

 The hardware device can be untrusted, and thus can write bad data
into coherent DMA buffers, which are used by the driver

 The driver should perform correct validation of the data from DMA
buffers before using the data

 Security risks of violations
 Unchecked DMA access
 Security bugs, such as buffer overflow and invalid-pointer access

57

Example
 Unchecked DMA access in the Linux vmxnet3 driver

 Introduced in Linux 3.16 (released in Aug. 2014)
 Fixed in Jun. 2020 by us

58

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_ethtool.c
693. static int vmxnet3_get_rss(...) {

696. struct UPT1_RSSConf *rssConf = adapter->rss_conf;
697. unsigned int n = rssConf->indTableSize;

704. while (n--)
705. p[n] = rssConf->indTable[n]; // Possible buffer overflow
706. return 0;
707. }

FILE: linux-5.6/drivers/net/vmxnet3/upt1_defs.h
80. struct UPT1_RSSConf {
81. u16 hashType;

86. u8 indTable[UPT1_RSS_MAX_IND_TABLE_SIZE]; // Bound is 128
87. }

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_drv.c
3240. static int vmxnet3_probe_device(...) {

 // Coherent DMA allocation
3373. adapter->rss_conf = dma_alloc_coherent(...);

3531. }

Unsafe DMA access
 Basic rules

59

dma_addr = dma_map_single(buf)

dma_sync_single_for_cpu(dma_addr)

dma_sync_single_for_device(dma_addr)

dma_unmap_single(dma_addr)

Accessing the content of
buf is forbidden!

Accessing the content of
buf is allowed!

Streaming DMA access

dma_buf = dma_alloc_coherent(...)

Data in dma_buf should
be correctly validated!

Coherent DMA access

Accessing the content of
buf is forbidden!

Use data in dma_buf

Challenges of detecting unsafe DMA access
 C1: Identifying DMA access

 Each DMA access is implemented as a regular variable access,
without calling specific interface functions

 DMA creation and DMA access often have no explicit execution
order from static code observation, namely in a broken control flow

 C2: Checking the safety of DMA access
 Accuracy and efficiency of analyzing large OS code

 C3: Dropping false positives
 Validating code-path feasibility is difficult and expensive

60

Key techniques
 C1: Identifying DMA access

 Field-based alias analysis to effectively identify DMA access

 C2: Checking the safety of DMA accesses
 Flow-sensitive and pattern-based analysis to accurately and

efficiently check the safety of DMA access
 C3: Dropping false positives

 Efficient code-path validation method to drop false positives and
reduce the overhead of using a SMT solver

61

DMA-access identification
 S1: Handling DMA-buffer creation

 Identify DMA-creation function calls
 Collect the information about their return variables, including variable

names, data structure types and fields
 S2: Identifying DMA access

 Check each variable access in the driver
 If variable name or data structure information matches the collected

information, the access is identified to be a DMA access
 Alias analysis is useful to handling variable assignments

 Intra-procedural, flow-insensitive and Andersen-style alias analysis

62

DMA-access identification
 Example

63

FILE: linux-5.6/drivers/isdn/hardware/mISDN/hfcpci.c
 450. static int receive_dmsg(...) {

 461. df = &(hc->hw.fifos)->d_chan.d_rx; // DMA access

 527. }

1986. static int setup_hw(...) {

 // Coherent DMA allocation
2008. buffer = pci_alloc_consistent(...);

2015. hc->hw.fifos = buffer;

2043. }

Alias

Record data structure type and field

Match the recorded data structure type and field

DMA-access safety checking
 Checking streaming DMA access

 Four patterns about DMA operations
 Forward and backward flow-sensitive analysis

64

Pattern 1

dma_addr = dma_map_single(buf) // Start

Read or write the content of buf // Report!
Forward flow-sensitive analysis

Pattern 2

dma_sync_single_for_device(dma_addr) // Start

Read or write the content of buf // Report!
Forward flow-sensitive analysis

Pattern 3

Read or write the content of buf // Report!

dma_unmap_single(dma_addr) // Start
Backward flow-sensitive analysis

Pattern 4

Read or write the content of buf // Report!

dma_sync_single_for_cpu(dma_addr) // Start
Backward flow-sensitive analysis

DMA-access safety checking
 Checking coherent DMA access

 Flow-sensitive taint analysis to identify DMA-affected operations
 Three patterns about security problems

65

FILE: linux-5.6/drivers/net/wireless/intel/iwlwifi/pcie/rx.c
1693. static u32 iwl_pcie_int_cause_ict(...) {

1714. do {

1722. read = trans_pcie->ict_tbl[...];

1725. } while (read); // Possible bug

1743. }

2054. int iwl_pcie_alloc_ict(...) {

 // Coherent DMA allocation
2058. trans_pcie->ict_tbl = dma_alloc_coherent(...);

2071. }

Pattern 1: Infinite loop polling

FILE: linux-5.6/drivers/net/wireless/intel/ipw2x00/ipw2100.c
2661. static void __ipw2100_rx_process(...) {

 // MASK is 0x0f
2701. frame_type = sq->drv[i].status_fields & MASK;

 // Possible bug
2710. IPW_DEBUG_RX(..., frame_types[frame_type], ...)

2765. }

4318. static int status_queue_allocate(...) {

 // Coherent DMA allocation
4325. q->drv = pci_zalloc_consistent(...);

4334. }

Pattern 2: Buffer overflow

FILE: linux-5.6/drivers/net/ethernet/socionext/netsec.c
 931. static int netsec_process_rx(...) {

 948. struct netsec_de *de = dring->vaddr + ...;

 971. pkt_len = de->buf_len_info >> 16;

 // Possible bug, as xdp.data is a pointer
1003. xdp.data_end = xdp.data + pkt_len;

1059. }

1241. static int netsec_alloc_dring(...) {
 // Coherent DMA allocation
1245. dring->vaddr = dma_alloc_coherent(...);

1259. }

Pattern 3: Invalid pointer access

Code-Path Validation
 S1: Getting path constraints

 Translate each instruction in the code path to an Z3 constraint
 Example: “a = b + c” -> “a == b + c”

 S2: Adding additional constraints
 Identify and add constraints that can trigger security bugs
 Example: For buffer overflow, add “frame > MAX_SIZE” when frame

is an index to access an array whose bound is MAX_SIZE

 S3: Solving all constraints
 If the constraints cannot be satisfied, the possible unsafe DMA

access is identified as a false positive and is dropped
66

Approach
 SADA (Static Analysis of DMA Access)

 Integrate the three key techniques
 Statically detect unsafe DMA access in device drivers
 LLVM-based static analysis

67

SADA

Linux Driver
Source Files

Clang
Compiler

Information
Collector

Access
Detector

Access
Checker

Path
Validator

LLVM Bytecode DMA-Buffer
Information DMA Accesses Possible Unsafe

DMA Accesses
Final Unsafe

DMA Accesses

Evaluation
 Detection of unsafe DMA accesses

68

Description Linux 5.6

Code handling
Source files (.c) 14.6K
Source code lines 8.8M

DMA-access
identification

Encountered DMA-buffer creation 2,781
DMA buffers in data structure fields 2,074
Identified DMA accesses 28,732

DMA-access
checking

Unsafe DMA accesses (real / all) 284 / 321
Inconsistent DMA accesses (real / all) 123 / 131
Unchecked DMA accesses (real / all) 161 / 190

Time usage
DMA-access identification 62m
DMA-access checking 208m
Total time 270m

		Description

		Linux 5.6

		Code handling

		Source files (.c)

		14.6K

		

		Source code lines

		8.8M

		DMA-access identification

		Encountered DMA-buffer creation

		2,781

		

		DMA buffers in data structure fields

		2,074

		

		Identified DMA accesses

		28,732

		DMA-access

checking

		Unsafe DMA accesses (real / all)

		284 / 321

		

		Inconsistent DMA accesses (real / all)

		123 / 131

		

		Unchecked DMA accesses (real / all)

		161 / 190

		Time usage

		DMA-access identification

		62m

		

		DMA-access checking

		208m

		

		Total time

		270m

Evaluation
 123 inconsistent DMA accesses

 Direct access after DMA creation: 108
 Incorrect DMA synchronization: 15

 161 unchecked DMA accesses
 Buffer overflow: 121
 Invalid-pointer access: 36
 Infinite loop polling: 4

 105 of the 284 real unsafe DMA accesses have been
confirmed by driver developers

69

Limitations
 False positives

 The current alias analyses is simple and not accurate enough
 The path validation can make mistakes in complex cases
 ……

 False negatives
 Lack the analysis of function-pointer calls
 Neglect other patterns of unsafe DMA accesses
 ……

70

Conclusion
 DMA is popular in modern device drivers but can introduce

security risks in practice
 SADA: static detection of unsafe DMA accesses

 Field-based alias analysis
 Flow-sensitive and pattern-based analysis
 Efficient code-path validation method

 Find 284 real unsafe DMA accesses in Linux 5.6
 Published in USENIX Security’21

 Static Detection of Unsafe DMA Accesses in Device Drivers. Jia-Ju
Bai, et al.

71

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

72

Ongoing works
 Static analysis

 Efficient alias analysis for large-scale software
 Alias-aware bug detection in OS kernels
 Deadlock detection in OS kernels
 ……

 Dynamic analysis
 Concurrency fuzzing for data-race detection
 Semantics-aware fuzzing of DBMS
 Fuzzing distributed systems software
 ……

73

Research on systems software analysis
 Program analysis techniques

 Static analysis
 Dynamic analysis

 Domain-specific knowledge of specific systems software
 OS kernels
 Distributed systems software
 Network protocols
 ……

 Limitations of existing generic/specific approaches
 Characteristic techniques

74

谢谢聆听！
欢迎加入系统软件可靠性研究！

白家驹
清华大学操作系统实验室
https://baijiaju.github.io/

	操作系统的静态分析与缺陷检测
	Outline
	Outline
	Operating system (OS)
	Operating system (OS)
	Operating system (OS)
	Static analysis
	Static analysis
	Static analysis of operating system
	Our approaches
	Outline
	Background
	Motivation
	Motivation
	Motivation
	Motivation
	Challenges
	Techniques
	T1: Summary-based analysis
	Example
	Example
	T2: Connection-based analysis
	Link-information connection
	Function-call connection
	T3: Path-check method
	DSAC approach
	Evaluation
	Evaluation
	Evaluation
	Comparison
	Conclusion
	Outline
	Background
	Background
	Example
	Study of Linux kernel commits
	Study of Linux kernel commits
	Challenges
	Approach
	Approach
	Local-global strategy
	Local-global strategy
	Local-global strategy
	Local stage
	Global stage
	Summary-based lockset analysis
	Evaluation
	Evaluation
	Evaluation
	Conclusion
	Outline
	Background
	DMA access
	DMA type
	Security risks of DMA access
	Example
	Security risks of DMA access
	Example
	Unsafe DMA access
	Challenges of detecting unsafe DMA access
	Key techniques
	DMA-access identification
	DMA-access identification
	DMA-access safety checking
	DMA-access safety checking
	Code-Path Validation
	Approach
	Evaluation
	Evaluation
	Limitations
	Conclusion
	Outline
	Ongoing works
	Research on systems software analysis
	谢谢聆听！�欢迎加入系统软件可靠性研究！

