
Multi-level Observation and
Understanding of Program Behaviors

Liang Zhenkai 梁振凯

Security Incidents Are on The Rise

1

What happened? Who is affected? How to prevent?

Binary-Level View

00 48 2d e9 04 b0 8d e2
0c 00 9f e5 a5 ff ff eb
00 30 a0 e3 03 00 a0 e1
00 88 bd e8 d0 04 01 00

Binary code

myfunc:
push {fp, lr}
add fp, sp, #4
ldr r0, helloworld
bl <puts>
mov r3, #0
mov r0, r3
pop {fp, pc}

Assembly code

void myfunc (){
printf(“hello world”);

}

Source code
Control-flow Graph

Instruction Trace

Binary-Leve Vulnerability, Attacks and Defenses
• Code injection
• Code reuse
• return-to-libc
• return-oriented programming (ROP)

• Data-oriented Programming (DOP)

3

Memory space

Code

DataData w/ DEP

Data Execution Prevention

Control Flow Integrity

CFI

CFG

Xü

4

Audit-Log-Level View
l User-space utilities (e.g., Auditd) collect system call records from kernel space

through Netlink and write them to a log file under /var/log/audit
l An Example of a read log entry in Auditd

l An Example of a read log entry in Auditbeat

Enterprise Network View

High-level Report

6

Understanding of Cyber Security Events

Endpoint Monitoring Solutions

8

Endpoint monitoring solutions record audit logs for attack investigation

Audit logs:
l A history of events representing OS-level activities
l Provide visibility into security incidents with data provenance

type=SYSCALL msg=audit(30/09/19 20:34:53.383:98866813) : arch=x86_64
syscall=read exit=25 a0=0x3 ppid=15757 pid=30204 auid=junzeng sess=6309

Provenance Analysis

PID: 30204FD: 0x3
read

Audit Log Analysis
• Starting from a detection point, Backtracker does:

• Events & objects identification related detection point
• Generate dependency graph
• Use rules to prune unrelated nodes in the dependency graph

Backtracker (King & Chen,
2003)

Suspicious file
or process

Dependency explosion!

Audit Log Analysis
• Resolve dependency explosion problem in a long running application
• Fine-grained provenance tracing technique
• Identifying unit boundaries & dependences
• Partition into individual unit
• Code instrumentation

BEEP (Lee et al., 2013)

Suspicious file
or process

Audit Log Analysis
• Address threat alert fatigue during threat investigation
• Sssign anomaly scores to every edge in dependency graph
• Based on frequency of events that have occured (historical & contextual

information)
• Propagated score through edges in the graph
• Generate aggregated anomaly score for triaging

NoDoze (Hassan et al., 2019)

High frequency
suspicious event

42

Audit Log Analysis
• Generate high-level graph during threat investigation
• Develop robust & reliable detection signal
• Correlate between suspicious information flow

HOLMES (Milajerdi et al.,
2019)

Higher
level

Related Work

13

l Scale up provenance analysis:
l Data reduction [NDSS’16, 18 …] & Query system [Security’18, ATC’18 …]
l Recognizing behaviors of interest requires intensive manual efforts

A semantic gap between low-level events and high-level behaviors

l Apply expert-defined specifications to bridge the gap
l Match audit events against domain rules that describe behaviors
l Query graph [VLDB’15, CCS’19], Tactics Techniques Procedures (TTPs)

specification [SP’19,20], and Tag policy [Security’17,18]

Behavior-specific rules heavily rely on domain knowledge (time-consuming)

d

Can we automatically abstract high-level behaviors
from low-level audit logs and cluster semantically
similar behaviors before human inspection?

bash

lsvim gcc

cc1 collect2as

ld

Pro1.c

a.out

a.out

sudo

vim tar

Eva.doc Eva.tar

bash

git add

git commit

git push 13.250.X.X

apt

sudo apt

sh

dpkg

gpgv

dpkg

update-motd-upd

http

http

apt-config dpkg

rm find

apt-key

bash ssh

shrun-parts

sshd

gcc

cc1

git add git commit git push

ssh13.250.X.X

catls cp

secret.txt a.c

bash

Motivating Example
Attack Scenario: A software tester exfiltrates sensitive data that he has access to

Data Exfiltration Steps

13.250.X.Xsecret.txt

a.c a.out

cp

gcc

github

14

Motivating Example Logs

bash

lsvim gcc

cc1 collect2as

ld

Pro1.c

a.out

a.out

sudo

vim tar

Eva.doc Eva.tar

bash

git add

git commit

git push 13.250.X.X

Data Exfiltration

Program Compilation and Upload Github Submission

apt

sudo apt

sh

dpkg

gpgv

dpkg

update-motd-upd

http

http

apt-config dpkg

rm find

apt-key

Package Installation

Package List Update

bash ssh

shrun-parts

sshd

gcc

cc1

git add git commit git push

ssh13.250.X.X

catls cp

secret.txt a.c

bash

Motivating Example

Data Exfiltration Steps

13.250.X.Xsecret.txt

a.c a.out

cp

gcc

github

15

Motivating Example Logs

Data Exfiltration

Program Compiling and Upload (cluster)

Attack Scenario: A software tester exfiltrates sensitive data that he has access to

bash

lsvim gcc

cc1 collect2as

ld

Pro1.c

a.out

a.out

sudo

vim tar

Eva.doc Eva.tar

bash

git add

git commit

git push 13.250.X.X

Data Exfiltration

Program Compilation and Upload Github Submission

apt

sudo apt

sh

dpkg

gpgv

dpkg

update-motd-upd

http

http

apt-config dpkg

rm find

apt-key

Package Installation

Package List Update

bash ssh

shrun-parts

sshd

gcc

cc1

git add git commit git push

ssh13.250.X.X

catls cp

secret.txt a.c

bash

Challenges for Behavior Abstraction

Event Semantics Inference:
l Logs record general-purpose system

activities but lack knowledge of high-level
semantics

Individual Behavior Identification:
l The volume of audit logs is overwhelming
l Audit events are highly interleaving

16

Data Exfiltration

Program Compiling and Upload

Package Installation Events > 50,000

Our Insights

17

a.c

a.c

cc1

cc1

as

as

ld

ld

/tmp/ccCdWCyH.s a.out

/tmp/cc5vRkEk.s a.out

Similar context --> Similar semantics

X.o

X.o

Compiling program using GCC

How do analysts manually interpret the semantics of audit events?

Our Insights

Reveal the semantics of audit events from their usage contexts in logs

18

a.c

cc1

cc1

as ld

/tmp/ccCdWCyH.s a.out

/tmp/cc5vRkEk.s

Different context --> Different semantics

X.o

Compiling program using GCC

How do analysts manually interpret the semantics of audit events?

secret.txt

Data Exfiltration

Our Insights

Summarize behaviors by tracking information flows rooted at data objects
19

How do analysts manually identify behaviors from audit events?

Forward tracking on secret.txt

secret.txt cat cp a.c
cc1

git add git commit git push ssh

Data Exfiltration Behavior

WATSON

An automated behavior abstraction approach that aggregates the
semantics of audit logs to model behavioral patterns

l Input: audit logs (e.g., Linux Audit[1])
l Output: representative behaviors

20[1] Linux Kernel Audit Subsystem. https://github.com/linux-audit/ audit-kernel.

KG = {(h, r, t)|h, t ∈ {Process, F ile, Socket}, r ∈ {Syscall}}

Knowledge Graph Construction
We propose to use a knowledge graph (KG) to represent audit logs:

l KG is a directed acyclic graph built upon triples

l Each triple, corresponding to an audit event, consists of three elements (head,
relation, and tail):

l KG unifies heterogeneous events in a homogeneous manner

21

Event Semantics Inference
l Suitable granularity to capture contextual semantics

l Prior work [CCS’17] studies log semantics using events as basic units.
l Lose contextual information within events
l Working on Elements (head, relation, and tail) preserves more contexts

l Employ an embedding model to extract contexts
l Map elements into a vector space
l Spatial distance represents semantic similarities
l TransE: a translation-based embedding model
l Head + Relation ≈ Tail à Context decides semantics

22

Event Semantics Explicability
Use t-SNE to project the embedding space (64 dimensional in our case)
into a 2D-plane, giving us an intuition of embedding distribution

Semantically similar system entities are clustered in the embedding space

(a) 53 Program embeddings (b) 25 data object embeddings

23

Socket (port 22)

Socket (port 80)

Files

bash

lsvim gcc

cc1 collect2as

ld

Pro1.c

a.out

a.out

bash

git add

git commit

git push 13.250.X.Xssh

Behavior Summarization

24

Individual behavior identification: Apply an adapted depth-first search (DFS)
to track information flows rooted at a data object:

l Perform the DFS on every data object except libraries
l Two behaviors are merged if one is the subset of another

Data Exfiltration

Program Compiling and Upload

Different!

Behavior Semantics Aggregation
l How to aggregate event semantics to represent behavior semantics?

l Naïve approach: Add up the semantics of a behavior’s constituent events
l Assumption: audit events equally contribute to behavior semantics

l Relative event importance
l Observation: behavior-related events are common across behaviors, while

behavior-unrelated events the opposite
l Apply frequency as a metric to define event importance
l Quantify the frequency: Inverse Document Frequency (IDF)

l The presence of noisy events
l Redundant events [CCS’16] & Mundane events

25

Representative Behavior Identification
l Cluster semantically similar behaviors: Agglomerative Hierarchical

Clustering analysis (HCA)

l Extract the most representative behaviors
l Representativeness: Behavior’s average similarity with other behaviors in a cluster
l Analysis workload reduction: Do not go through the whole behavior space

26

Efficacy in Attack Investigation
Measure the analysis workload reduction of APT attack investigation in
the DARPA TRACE dataset:

l Analysis workload: the number of events to recognize all behaviors

Two orders of magnitude reduction in analysis workload and behaviors
27

Functionality, Flexibility, and Security
• Security is about “nothing

else”
• Specified functionality and only

specified functionality

• Flexibility is the root of many
security problems

Specified
Functionalit

y

F(x) = x + 1

Possible
Software
Behaviors

system()
Socket()

• KISS
(Keep It Simple, Stupid)

• KICS
(Keep It Complex & Smart)

Simplicity in System Design

Dimensions of System Research

30

Human factor,
social

engineering

Isolation,
memory exploit,

provenance
analysis, …

Law, policy,
politics

Psychology,
cognition,

responsibility
System

System

Human

Human

Objective for Graduate Education
• Deep knowledge and skills in technology domain
• Abstraction and presentation of thoughts

• Ability to think and analyze broadly
• Especially in challenging times, calling for independent minds

• Understanding systems better
• Order, flexibility, force, …

• Form and live with a philosophy
• Embrace trust
• Life with minimal dependency

Research Areas and Range of Development

System and security:
National Cybersecurity R&D Lab

Economics, business, and technology
Fintech Institute

Behavior/Psychology and security:
CFPR in Arts and Social Science

Top-ranked degree program and open culture
Top researchers in various fields

Views from different perspectives
Culture, social system, etc.

Binary and System Analysis
Attack diagnosis and attributionTrusted environment in Web/Mobile Human behavior in cyber experimentation

Understand the movement of the sun and moon
from traces of shadows under the roof.

审堂下之阴，而知日月之行，阴阳之变也 Thank you!

l Multiple-level views of cyber
incidents

l Our Insights in log analysis
l Infer audit event semantics by usage

contexts
l Identify behaviors with information

flows rooted at data objects
l On system research

Understanding systems 理解系统
Abstracting knowledge 提炼知识

Connecting facts 参悟规律

