Software Security Analysis
from Automation to Intelligence

Yulei Sui

http://yuleisui.github.io

School of Computer Science
University of Technology Sydney, Australia

August 4, 2021

e 1/115
Yulei Sui August 4, 2021

http://yuleisui.github.io

Modern System Software

Extremely large and complex but error-prone

More
Complex!
Memory Leaks
Buffer Overflows
Null Pointers More
SYSTEM CRASHES 7 Buggy!

Use-After-Frees

Data-races

2/115
Yulei Sui August 4, 2021

Modern System Software

Extremely large and complex but error-prone

Memory.
2156726

i
416616K i

>
- use-after-free data race
memory leaks o o .
. exploit price up to $100k 11 civilians died
massive leaks over 2GB :
. per bug in Chrome
on a single browser tab

null pointer]
buffer overflow denial of service affecting password leakage via taron

66% websites affected millions of servers worldwide Solaris OS

3/115
Yulei Sui August 4, 2021

Modern System Software

Extremely large and complex but error-prone

e Lo [v “

2156726

5 o
o et o« Vulnerabilities (security defects)
(& Tab: PC Game. 416616K 3 0
B Tab: Facebook e Therisks
< 1 B i
Quality issue: many more “underwater” than those reported “above the water”

Stats for nexds End pro

- -
memory leaks

* Lists >47,000 documented vulnerabilities m - _—

massive leaks over 2G -
on a single browser tal [t a g

vulnerablities are huge

data race
11 civilians died

* 204" muitiplier
+47,000x 20 = estimated 940,000 vulnerabilities
replicatedin many products

Greater than 80% of attacks
happen at the application layer

null pointer]
buffer overflow denial of service affecting password leakage via taron

66% websites affected millions of servers worldwide Solaris OS

e 4/115
Yulei Sui August 4, 2021

Outline

e Existing software bugs and vulnerabilities
¢ Automated static analysis and dynamic analysis

® Foundation: SVF - value-flow analysis framework

® Key features: sparse and on-demand analysis

® Applications: value-flow analysis to detect memory corruption errors
¢ Learning-based software security analysis

® Case 1: Boosting the performance of existing detectors
® Case 2: Rapid prototyping via code embedding

e 5/115
Yulei Sui August 4, 2021

Memory Leak
¢ A dynamically allocated object is not freed along some execution path of a
program
¢ A major concern of long running server applications due to gradual loss of
available memory.

1 |/« CVE—2012—0817 allows remote attackers to cause a denial of service through adversarial connection requests. */
2 | /+ Samba ——libads/ldap.c:ads_leave_realm /.

3

4 | host = memAlloc(hostname);

5 | ..

6 if (..) {..; return ADS_.ERROR_SYSTEM(ENOENT);} // The programmer forgot to release host on error.

7

1 |/« Amemory leak in Php—5.5.11 %/

2

3 | for (..) {

4 charx buf = readBuffer ();

5 if (condition)

6 printf (buf);

7 else

8 continue; // buf is leaked in else branch

9 freeBuf(buf);
10

6/1[15

Yulei Sui August 4, 2021

Buffer Overflow
e Attempt to put more data in a buffer than it can hold.
* Program crashes, undefined behavior or zero-day exploit!.

1 | /= A simplified example from "Young and Mchugh, IEEE S&P 1987”, exploited by attackers to bypass verfication:/
2
3 void verfiyPassword(){
4 char buff [15]; int pass = 0;
5 printf ("\n Enter the password : \n");
6 gets(buff);
7
8 if (stremp(buff, "thegeekstuff”)){ // return non—zero if the two strings do not match
9 printf (”\n Wrong Password \n");
10
1 else{ /I return zero if two strings matched or a buffer overrun
12 printf ("\n Correct Password \n");
13 pass =1;
14
15 if (pass)
16 printf (”\n Root privileges given to the user \n");
17
18

! Heartbleed, a well-known vulnerability in OpenSSL is also caused by buffer overflow (It took more than 2 years to discover and fix it since first
patch, and over 500,000 websites were affected). Vulnerability is exploited when more data can be read than should be allowed.

e 7/115
Yulei Sui August 4, 2021

Uninitialized Variable
e Stack variables in C and C++ are not initialized by default.
¢ Undefined behavior or denial of service via memory corruption

1 /= An uninitialized variable vulnerability simplified from gnuplot (CVE—2017—9670) =/
2
3 | void load(){
4 switch (ctl) {
5 case —1:
6 xN=0; yN=0;
7 break;
8 case 0:
9 xN=i; yN=—i;
10 break;
1 case 1:
12 xN =i + NEXT_SZ; yN =i — NEXT_SZ;
13 break;
14 default:
15 xN = —1;xN = —1;//xN is accidentally set twice while yN is uninitialized
16 break;
17
18 plot (xN, yN);
19 |}
20
21

e 8/115
Yulei Sui August 4, 2021

Use-After-Free

e Attempt to access memory after it has been freed.
* Program crashes, undefined behavior or zero-day exploit.

1 |/« CVE—2015—6125 and CVE—2018—12377 with similar heap use after free patternssx/
2
3 | charx msg = memAlloc(...);
4 | ..
5 it (err) {
6 abrt = 1;
7
8 free(msg); / the memory is released when an error occurs at server
9 |}
10
11 if (abrt) {
12
13 logError(”operation aborted before commit”, msg); // try to access released heap variable,
14 /I causing either crash or writing confidential data
15 |}
| 9/115

Yulei Sui August 4, 2021

Data Race

¢ A data race occurs when two threads access the same memory concurrently

and at least one of the accesses is for writing.
* Program crashes, undefined behavior and zero-day exploit.

1 | typedef std :: map<std::string, u32.int> map.t;
2
3 | void xbalance_Inquire(void *p) {
4 map-t& m = x(map_-tx)p;
5 m["client”] = amount; // map m is written in thread t
6 return 0;
7
8
9 int main() {
10 map_t m;
11 pthread.t t;
12 pthread_create(&t, 0, &balance_Inquire, &m);
13 printf (" client=%d\n”, m["client”]); /I map mis read in thread main
14 pthread_join(t, 0);
15
16

e
Yulei Sui August 4, 2021

10/115

Outline

¢ Existing software bugs and vulnerabilities
e Automated static analysis and dynamic analysis

® Foundation: SVF - value-flow analysis framework

® Key features: sparse and on-demand analysis

® Applications: value-flow analysis to detect memory corruption errors
¢ Learning-based software security analysis

® Case 1: Boosting the performance of existing detectors
® Case 2: Rapid prototyping via code embedding

e 11/115
Yulei Sui August 4, 2021

What is Software/Program Analysis
e Software Analysis a.k.a Program analysis is the process of automatically
analyzing the behavior of computer programs such as correctness,
robustness, safety and security.
e Program analysis is to develop algorithms and tools which can analyze other
programs

automatically generated report

12/115
Yulei Sui August 4, 2021

What is Software/Program Analysis

e Software Analysis a.k.a Program analysis is the process of automatically
analyzing the behavior of computer programs such as correctness,
robustness, safety and security.

¢ Program analysis is to develop algorithms and tools which can analyze other
programs
¢ Applications of program analysis
* Compiler optimizations: transforming the source code to minimize a program’s
execution time, memory footprint, storage size, and power consumption
* Bug finding: Identify the program or system that cause failure or produce an
unexpected result
e Security vulnerability assessment: Protect private users’ data in databases
¢ Automatic Parallel Computation: Guarantee the safe execution in different
iterations on parallel calculations

e 13/115
Yulei Sui August 4, 2021

Static Analysis vs. Dynamic Analysis
Static Analysis

® Analyze a program without actually executing it — inspecting source code by examining all
possible program paths
® + Pin-point problems at source code level.
+ Catch bugs at early the stage of the software development cycle.
- False alarms due to over-approximation.
- Precise analysis has scalability issue for analyzing large size programs.

e 14/115

Yulei Sui August 4, 2021

Static Analysis vs. Dynamic Analysis
Static Analysis

® Analyze a program without actually executing it — inspecting source code by examining all
possible program paths

+ Pin-point problems at source code level.

+ Catch bugs at early the stage of the software development cycle.

- False alarms due to over-approximation.

- Precise analysis has scalability issue for analyzing large size programs.

Levels of Abstractions . .
Assume x is a tainted value

p=x foo(x) foo(y) if(cond)
can\ acal p=x
p=y foo(p)X else
3 p=y
flow-sensitivity context-sensitivity path-sensitivity
at which under which along which
program point calling context program path
p is tainted? p is tainted? p is fainted?

e 14/115
Yulei Sui August 4, 2021

Static Analysis vs. Dynamic Analysis

Dynamic Analysis

® Analyze a program at runtime — inspecting running program by examining some executable
paths depending on specific test inputs
® + Identify bugs at runtime (catch it when you observe it).
® + Zero or very low false alarm rates.
® - Runtime overhead due to code instrumentation.
® - May miss bugs (false negative) due to under-approximation.

e 15/115

Yulei Sui August 4, 2021

Static Analysis vs. Dynamic Analysis

Dynamic Analysis

® Analyze a program at runtime — inspecting running program by examining some executable
paths depending on specific test inputs
® + Identify bugs at runtime (catch it when you observe it).
® + Zero or very low false alarm rates.
® - Runtime overhead due to code instrumentation.
® - May miss bugs (false negative) due to under-approximation.

Instrumentations Limited Coverage

Check against if(hard_to_satisfy)
p =x[i] / Sel_f-malntamfecfi X="p // a null dereference
Observe_and_check (8x, i) runtime meta-info else
X=*q /I a safe dereference

15/115
Yulei Sui August 4, 2021

Bug Detection Philosophy

FALSE POSITIVES

OVER
APPROXIMATION

ABUGY PROGRAM

e Soundness : Over-Approximation (Static Analysis)
e Completeness : Under-Approximation (Dynamic Analysis)

e 16/115
Yulei Sui August 4, 2021

Bug Detection Philosophy

ABUGY PROGRAM

FALSE NEGTIVES
e Soundness : Over-Approximation (Static Analysis)
e Completeness : Under-Approximation (Dynamic Analysis)

17/115
Yulei Sui August 4, 2021

Bug Detection Philosophy

FALSE POSITIVES

OVER
APPROXIMATION

ABUGY PROGRAM

FALSE NEGTIVES
e Soundness : Over-Approximation (Static Analysis)
e Completeness : Under-Approximation (Dynamic Analysis)

18/115
Yulei Sui August 4, 2021

Some Static and Dynamic Analysis Tools

static

Flawfinder FindBug(SemmIe

open-source

B deepsource %»@@%
sonarqube \ Cppcheck

SVF-tool Splint

commercial

' |~F4 ICRO SYNoPSYS

= ->ODE
C?dvesm wraxis
k1uwa n
SOURCEBRELLA RI PS
@COVERITY' @ CODESONAR

dynamic

Yulei Sui August 4, 2021

}\/% leé,l md

Iroh.js sanitizers
Dmalloc Jalangi2

Trustw ,,,,,,,,
@ (» Dynamic

ocunzux HCL AppScan

OWARSP,

detectify d

19/115

Whole-Program CFG of 300.twolf (20.5KLOC)

I 4

#functions: 194 #pointers: 20773 #loads/stores: 8657
Costly to reason about flow of values on CFGs!

20/115
Yulei Sui August 4, 2021

Call Graph of 176.gcc (230.5KLOC)

e e e e e R e R
%@@%%%%%%%%%%%%EE%l%%%@%@%%%@%

[A o < S B e -+ 5 0 B s o o e B B - B -+ I BB R
E%%@%@E@@*%E%%@%@%EIEE%@.@EEEEl¥~+=\=
IR R - R R EEE - ~EEEE B T LA L

#functions: 2256 #pointers: 134380 #loads/stores: 51543

Costly to reason about flow of values on CFGs!

Yulei Sui August 4, 2021

21/115

Call Grph of 176.qdcc

22/115

Outline

¢ Existing software bugs and vulnerabilities
¢ Automated static analysis and dynamic analysis

® Foundation: SVF - value-flow analysis framework

® Key features: sparse and on-demand analysis

® Applications: value-flow analysis to detect memory corruption errors
¢ Learning-based software security analysis

® Case 1: Boosting the performance of existing detectors
® Case 2: Rapid prototyping via code embedding

e 23/115
Yulei Sui August 4, 2021

SVF : Static Value-Flow Analysis

A sparse, selective and on-demand interprocedural program dependence analysis framework for
both sequential and multithreaded programs.

® The SVF project
® Started since early 2014, actively maintained. Publicly available at :
http://svi-tools.github.io/SVF.
¢ Implemented on top of LLVM compiler (the latest version 10.0.0) with over 100KLOC C/C++ code
and 600+ stars with 32 contributors and over 1K commits on Github.
® Invited for a plenary talk in EuroLLVM 2016, 2018 ICSE Distinguished Paper , 2019 SAS Best
Paper, 2020 OOPSLA Distinguished Paper.

e 24/115

Yulei Sui August 4, 2021

http://svf-tools.github.io/SVF

SVF : Static Value-Flow Analysis

A sparse, selective and on-demand interprocedural program dependence analysis framework for
both sequential and multithreaded programs.

® The SVF project
® Started since early 2014, actively maintained. Publicly available at :
http://svi-tools.github.io/SVF.
¢ Implemented on top of LLVM compiler (the latest version 10.0.0) with over 100KLOC C/C++ code
and 600+ stars with 32 contributors and over 1K commits on Github.
® Invited for a plenary talk in EuroLLVM 2016, 2018 ICSE Distinguished Paper , 2019 SAS Best
Paper, 2020 OOPSLA Distinguished Paper.

® Value-Flow Analysis: resolves both control and data dependence.
® Does the information generated at program point A flow to another program point B along some
execution paths?

® Can function F be called either directly or indirectly from some other function F’?
® |s there an unsafe memory access that may trigger a bug or security risk?

e 24/115
Yulei Sui August 4, 2021

http://svf-tools.github.io/SVF

SVF : Static Value-Flow Analysis

A sparse, selective and on-demand interprocedural program dependence analysis framework for
both sequential and multithreaded programs.

® The SVF project
® Started since early 2014, actively maintained. Publicly available at :
http://svi-tools.github.io/SVF.
¢ Implemented on top of LLVM compiler (the latest version 10.0.0) with over 100KLOC C/C++ code
and 600+ stars with 32 contributors and over 1K commits on Github.
® Invited for a plenary talk in EuroLLVM 2016, 2018 ICSE Distinguished Paper , 2019 SAS Best
Paper, 2020 OOPSLA Distinguished Paper.

® Value-Flow Analysis: resolves both control and data dependence.
® Does the information generated at program point A flow to another program point B along some
execution paths?
® Can function F be called either directly or indirectly from some other function F’?
® |s there an unsafe memory access that may trigger a bug or security risk?

e Key features of SVF

® Sparse: compute and maintain the data-flow facts where necessary

® Selective : support mixed analyses for precision and efficiency trade-offs.

® On-demand : reason about program parts based on user queries.
-] 24/115

Yulei Sui August 4, 2021

http://svf-tools.github.io/SVF

SVF : Static Value-Flow Analysis

® SVF has been used and cited by researchers from leading program analysis and security groups, e.g.
Chopped Symbolic Execution (from Imperial College London@ICSE’18 and @FSE’19), PinPoint (from
HKUST@PLDI’'18), Type-based CFI (from ACSAC’18@MIT and Northeastern University), Kernel Fuzzing
(from Purdue@IEEE S&P’18), Directed Fuzzer (from NTU@CCS’18), K-Miner (from TU
Darmstadt@NDSS’18), Permission Check Analysis (from Virginia Tech & Zhejiang University @USENIX
Security’19), probabilistic analysis (from University of Pennsylvania @PLDI'19), and Hybrid Testing (from
Northeastern University @S&P’20), and system call specialization (from Northeastern University
@USENIX Security’20), and hot patch generation for kernels (from NTU @USENIX Security’20), and
fuzzing for kernel file system (from Georgia Institute of Technology @S&P’20).

e 25/115
Yulei Sui August 4, 2021

https://dl.acm.org/citation.cfm?id=3180251
https://srg.doc.ic.ac.uk/files/papers/segmem-esecfse-19.pdf
https://dl.acm.org/citation.cfm?id=3192418
https://arxiv.org/abs/1810.10649
https://lifeasageek.github.io/papers/jeong:razzer.pdf
https://chenbihuan.github.io/paper/ccs18-chen-hawkeye.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05A-1_Gens_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05A-1_Gens_paper.pdf
https://www.usenix.org/system/files/sec19-zhang-tong.pdf
https://www.usenix.org/system/files/sec19-zhang-tong.pdf
https://www.cis.upenn.edu/~kheo/paper/pldi19.pdf
https://ieeexplore.ieee.org/abstract/document/9152682
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://www.usenix.org/conference/usenixsecurity20/presentation/xu
https://ieeexplore.ieee.org/abstract/document/9152693

SVF: Desian Principle

Analysis developers

[svF-Frontend (Memory Model)
N s (PA;/FG éx‘lll G}ph,\((;‘cansfmmf Graph)

Programs (i.gﬂ C/C++)

K Select graph(s)
. Select solver(s)
< ¥ Y 7
< Xk {55
Analysis Instances Insfantiafing\&dv\zrs @Fs, MCD, HCD)

| Graph Solver Templates |

® Serving as an open-source foundation for building practical value-flow analysis

® Bridge the gap between research and engineering
® Minimize the efforts of implementing sophisticated analysis (extendable, reusable, and robust via layers of abstractions)
® Support developing different analysis variants (flow-, context-, heap-, field-sensitive analysis) in a sparse and on-demand manner.

26/115
Yulei Sui August 4, 2021

SVF: Desian Principle

Analysis developers
[svF-Frontend (Memory Model)
N s (PA;/FG égll G}ph,\(GAConsfmmf Graph)

wriite

Programs (i.gﬂ C/C++)

K Select graph(s)
. Select solver(s)
« [y 'y [
- Xk {55
Analysis Instances Insfantmfing\sdv\ers @Fs, MCD, HCD)

| Graph Solver Templates |

® Serving as an open-source foundation for building practical value-flow analysis

® Bridge the gap between research and engineering

® Minimize the efforts of implementing sophisticated analysis (extendable, reusable, and robust via layers of abstractions)

® Support developing different analysis variants (flow-, context-, heap-, field-sensitive analysis) in a sparse and on-demand manner.
® (Client applications:

® Static bug detection (e.g., memory leaks, null dereferences, use-after-frees and data-races)
® Accelerate dynamic analysis (e.g., Google’s Sanitizers and AFL fuzzing)

26/115
Yulei Sui August 4, 2021

Outline

¢ Existing software bugs and vulnerabilities
¢ Automated static analysis and dynamic analysis

® Foundation: SVF - value-flow analysis framework

e Key features: sparse and on-demand analysis

® Applications: value-flow analysis to detect memory corruption errors
¢ Learning-based software security analysis

® Case 1: Boosting the performance of existing detectors
® Case 2: Rapid prototyping via code embedding

e 26/115
Yulei Sui August 4, 2021

Flow-Insensitive v.s. Flow-Sensitive Analysis
Flow-insensitive pointer analysis:
® |gnore program execution order
® A single solution across whole program

e 27 /115
Yulei Sui August 4, 2021

Flow-Insensitive v.s. Flow-Sensitive Analysis
Flow-insensitive pointer analysis:
® |gnore program execution order
® A single solution across whole program
Flow-sensitive pointer analysis:
® Respect program control-flow
® A separate solution at each program point

e 27 /115
Yulei Sui August 4, 2021

Flow-Insensitive v.s. Flow-Sensitive Analysis

Flow-insensitive pointer analysis:

® |gnore program execution order

® A single solution across whole program
Flow-sensitive pointer analysis:

® Respect program control-flow

® A separate solution at each program point

p=&a

*p = & tainted
*p = & safe
q="p

Flow-insensitive analysis

e 27 /115
Yulei Sui August 4, 2021

Flow-Insensitive v.s. Flow-Sensitive Analysis

Flow-insensitive pointer analysis:

® |gnore program execution order

® A single solution across whole program
Flow-sensitive pointer analysis:

® Respect program control-flow

® A separate solution at each program point

p=&a
p—a
*p = & tainted
P a — tainted, safe

*p = & safe q — tainted, safe

I

q="p false alarm!

Flow-insensitive analysis

27 /115
Yulei Sui August 4, 2021

Flow-Insensitive v.s. Flow-Sensitive Analysis

Flow-insensitive pointer analysis:

® |gnore program execution order

® A single solution across whole program
Flow-sensitive pointer analysis:

® Respect program control-flow

® A separate solution at each program point

p=&a

p=&a
p—a p—a
*p = & tainted *p = & tainted

a — tainted, safe p—a a- tainted

*p = & safe q — tainted, safe *p = & safe
\ p—a a — safe update

q="p false alarm! q="p

p—+a a-— safe q — safe

Flow-insensitive analysis Data-flow-based flow-sensitive analysis

27 /115
Yulei Sui August 4, 2021

The Data-flow-based Flow-Sensitive Analysis

® Propagates points-to along the control-flow without knowing whether the
information will be used there or not.

x=&m

X —=m

p=&a
TR x—om

*p = & tainted
p—a a-— tainted x ¥ m

*E = & safe

p—a a~— safe X = m

p—a a-— safe X—=m m-=n

q="p

p—a a— safe X—m m-=n (- safe

Data-flow-based flow-sensitive analysis

Yulei Sui August 4, 2021

28/115

The Data-flow-based Flow-Sensitive Analysis
® Propagates points-to along the control-flow without knowing whether the
information will be used there or not.
X =&m
X=m

p=&a
p—=a x=i
*p = & tainted

p—a a-— tainted X==m_

*E=&safe
p—a a-—safe —=m

P=a a=safe x-m m-on

q="p
p—a a—safe X=m m—= q — safe

Data-flow-based flow-sensitive analysis

Yulei Sui August 4, 2021

28/115

Sparse Flow-Sensitive Analysis (Tse'14, cc'16, TSE'18)
® Propagate points-to information only along pre-computed def-use chains (a.k.a

value-flows) instead of control-flow

—— > direct value-flow
_____ » indirect value-flow

X = m
x] p=&a
Pl p =2 x=am

,¢."p = & tainted

/lal p—a a-— tainted X==m_
\

/*E=&safe
’ p—~a a-—safe —=m

pl

\

Lag="

a — safe —=m. me—=m. g — safe

p—=a

Data-flow-based flow-sensitive analysis
28/115

Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/cc16.pdf

Sparse Flow-Sensitive Analysis (Tse'14, cc'16, TSE'18)
® Propagate points-to information only along pre-computed def-use chains (a.k.a
value-flows) instead of control-flow

—— > direct value-flow
_____ » indirect value-flow

X = m

X J/p=8&a
Pl p—=a

pl ,¢'p=&tainted

/la]l p—a a-— tainted

\

*E = & safe
7/

/ p—a a-— safe

\\
Lag="p
p—a a— safe

q — safe

Sparse flow-sensitive analysis
28/115

Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/cc16.pdf

Outline

Existing software bugs and vulnerabilities
Automated static analysis and dynamic analysis

® Foundation: SVF - value-flow analysis framework

e Key features: sparse and on-demand analysis

® Applications: value-flow analysis to detect memory corruption errors
Learning-based software security analysis

® Case 1: Boosting the performance of existing detectors

® Case 2: Rapid prototyping via code embedding

Research opportunities

e 28/115
Yulei Sui August 4, 2021

Value-Flow Analysis for Memory Error Detection

® Memory Leak Detection (ISSTA'12 and TSE’'14)
® context-free reachability problem on sparse value-flow graph
® report 40.7% more bugs than the fastest one with a slightly higher false positive rate but is only 3.7X
slower

e 29/115
Yulei Sui August 4, 2021

Value-Flow Analysis for Memory Error Detection

® Memory Leak Detection (ISSTA'12 and TSE’'14)
® context-free reachability problem on sparse value-flow graph
® report 40.7% more bugs than the fastest one with a slightly higher false positive rate but is only 3.7X
slower

* Use-after-free Detection (ACSAC’17, ICSE’18 and ICSE’20)
® spatio-temporal correlation problem and its context reduction
® validated with 10 open-source applications (3+ MLOC) with 7 CVE bug found
* Uninitialized Variable Detection (CGO’14 and FSE’16)
® reason about the definedness of values along sparse value-flow graph to remove redundant

instrumentation
® reduce the overhead of Google’s Memory Sanitizer from 302% to 123%

e 29/115
Yulei Sui August 4, 2021

Value-Flow Analysis for Memory Error Detection

® Memory Leak Detection (ISSTA'12 and TSE’'14)
® context-free reachability problem on sparse value-flow graph
® report 40.7% more bugs than the fastest one with a slightly higher false positive rate but is only 3.7X
slower

* Use-after-free Detection (ACSAC’17, ICSE’18 and ICSE’20)
® spatio-temporal correlation problem and its context reduction
® validated with 10 open-source applications (3+ MLOC) with 7 CVE bug found
* Uninitialized Variable Detection (CGO’14 and FSE’16)
® reason about the definedness of values along sparse value-flow graph to remove redundant
instrumentation
® reduce the overhead of Google’s Memory Sanitizer from 302% to 123%
e Buffer Overflow Detection (ISSRE’'14 and TRel’'16)

® eliminate expensive runtime checks inside loops through static weakest precondition analysis
® reduce the runtime overhead of SOFTBOUND from 77% to 47%

e 29/115
Yulei Sui August 4, 2021

Value-Flow Analysis for Memory Error Detection

® Memory Leak Detection (ISSTA'12 and TSE’'14)
® context-free reachability problem on sparse value-flow graph
® report 40.7% more bugs than the fastest one with a slightly higher false positive rate but is only 3.7X
slower

* Use-after-free Detection (ACSAC’17, ICSE’18 and ICSE’20)
® spatio-temporal correlation problem and its context reduction
® validated with 10 open-source applications (3+ MLOC) with 7 CVE bug found
* Uninitialized Variable Detection (CGO’14 and FSE’16)
® reason about the definedness of values along sparse value-flow graph to remove redundant

instrumentation
® reduce the overhead of Google’s Memory Sanitizer from 302% to 123%

Buffer Overflow Detection (ISSRE’'14 and TRel'16)
® eliminate expensive runtime checks inside loops through static weakest precondition analysis
® reduce the runtime overhead of SOFTBOUND from 77% to 47%
Control-Flow and Type Integrity (ISSTA’17 and ISSRE’19)
® pointer analysis to identify and remove spurious call targets by class hierarchy analysis to raise the
bar against code reuse attacks.
® reduce the sets of legitimate targets permitted at 20.3% of the virtual callsites in Chrome
TR 29/115
Yulei Sui August 4, 2021

Limitations of Conventional Program Analysis

¢ Performance
* Hard to balance between precision and scalability
® False alarms when using fast and imprecise Andersen’s analysis, yielding 126,000
alarms for programs with 2 MLOC.
— Imprecise handling of complicated program features, e.g., linked-list, loops and
recursions.
* Long running time when using precise flow- and context-sensitive analysis to
analyze 2 MLOC for weeks.
—php-5.6.8: 1,391 frees x 244,917 uses = 340 million pairs with billions of calling
contexts.

e 30/115
Yulei Sui August 4, 2021

Limitations of Conventional Program Analysis

¢ Performance
* Hard to balance between precision and scalability

® False alarms when using fast and imprecise Andersen’s analysis, yielding 126,000

alarms for programs with 2 MLOC.
— Imprecise handling of complicated program features, e.g., linked-list, loops and

recursions.

* Long running time when using precise flow- and context-sensitive analysis to
analyze 2 MLOC for weeks.

—php-5.6.8: 1,391 frees x 244,917 uses = 340 million pairs with billions of calling
contexts.
¢ Applicability
* Lack of an unified approach to recognizing a wide variety of vulnerabilities

® Bugs may behave very differently and often not simply manifest as memory
errors or crashes (e.g., misuse of APIs and inconsistent business logic) .

* Detecting each type of bugs needs to write their own detectors, which relies on
domain experts to define specific detection strategies.

® Combination knowledge of programming language theories and extensive
engineering efforts.

e 30/ 115
Yulei Sui August 4, 2021

Outline

¢ Existing software bugs and vulnerabilities
¢ Automated static analysis and dynamic analysis

® Foundation: SVF - value-flow analysis framework

® Key features: sparse and on-demand analysis

® Applications: value-flow analysis to detect memory corruption errors
¢ Learning-based software security analysis

® Case 1: Boost the performance of existing detectors
® Case 2: Rapid prototyping via code embedding

e 30/115
Yulei Sui August 4, 2021

Static Program Analysis for Bug Detection

Source code

Code Analysis Tools Bug report

®
X .
5% Typestate Analysis
.a.& Symbolic Execution

Abstract Interpretation

e 31/115
Yulei Sui August 4, 2021

Static Proagram Analysis for Buqg Detection

Source code

Code Analysis Tools Bug report

Unpack

@
Typestate Analysis
.Q.Q Symbolic Execution
Abstract Interpretation

Challenges
1) Developing a static program analyser requires both deep programming theories and extensive engineering efforts
--- Klee (https://klee.github.io/) started from 2008, it took ~10 years from publication, prototype and popular usage.
2) Program analysers for analysing large programs (MLOC) often over- or under- approximations, resulting in
--- false alarms (imprecise)
--- false negative and missing bugs (unsound)

Yulei Sui August 4, 2021

31/115

New Paradiagm for Software Security Analysis

Source code

Code Analysis Tools Bug report

Unpack

Typestate Analysis

¢Q Symbolic Execution

Abstract Interpretation
Challenges
1) Developing a static program analyser requires both deep programming theories and extensive engineering efforts
--- Klee (https://klee.github.io/) started from 2008, it took ~10 years from publication, prototype and popular usage.
2) Program analysers for analysing large programs (MLOC) often over- or under- approximations, resulting in
--- false alarms (imprecise)
--- false negative and missing bugs (unsound)

Opportunities
1) Our very own code analysis platform SVF (https://github.com/SVF-tools/SVF) with years-long efforts from 2014.
--- publicly available with over 230 stars and 2k downloads, producing over 10 CORE-A/A* papers,
--- plenary talk in EuroLLVM 2016, FSE Platinum Artifact Award 2016 and ICSE Distinguished Paper 2018
--- used, cited and commented by leading research groups, Cambridge, UIUC, UCSB and Oracle.
2) New software security paradigm : code representation as "big data"
--- control-flow graphs, data-flow graphs and abstract syntax trees

e 31/115
Yulei Sui August 4, 2021

Code Representation

Program dependence graph of source code of OpenCV project
(a computer vision library)

e 31/115
Yulei Sui August 4, 2021

New Paradigm for Software Security Analysis

Source code

Code Analysis Tools

Unpack

Typestate Analysis
Qﬁ Symbolic Execution

Abstract Interpretation

Bug report

3 »
g £
@ a
- S|z el
S
° S 3
® o sl g
N J a S
e |F 3
Il graph Program dependence B E3
a @
2
3
6]
<
n R
Code repr o ine learning and algorithms)
and features

Yulei Sui August 4, 2021

31/115

Outline

¢ Existing software bugs and vulnerabilities
¢ Automated static analysis and dynamic analysis
® Foundation: SVF - value-flow analysis framework
® Key features: sparse and on-demand analysis
® Applications: value-flow analysis to detect memory corruption errors
¢ Learning-based software security analysis
e Case study 1: Boost the performance of existing detectors (ACSAC 2017)
® Machine-learning-guided type-state analysis to detect use-after-free vulnerabilities

® Case study 2: Rapid prototyping via code embedding (OOPSLA 2020 and
TOSEM 2021)

® Code summarization, and vulnerability detection via code embedding

e 31/115
Yulei Sui August 4, 2021

Temporal Temporal Safety Error: Use-After-Free

e Use-after-free, a.k.a, dangling pointer dereference, i.e., referencing a memory

object after it has been released
* One of the most severe memory vulnerabilities
¢ Crashes and data corruption

¢ Information leakage
e Control-flow hijacking

US National Vulnerability Database (NVD)

ecified Limitations

[¢

ver 80%

of all UA|

Fs are of|

A

high se y

L~

of Vulnerabilities Meeting Sp

Yulei Sui August 4, 2021

32/115

Use-After-Free Vulnerability
A simple attack model

1: typedef void (*func_ptr)(); Runtime

memory layout

2: void foo() {..}

3: int main() {

4: func_ptr* p = malloc(4);
5: func_ptr* q = p;

6: *p = &foo;

7: free(p);

8: long int* r = malloc(4);
9: *r = userInput();

10: (*aq)(); // UAF bug

e 33/115
Yulei Sui August 4, 2021

Use-After-Free Vulnerability
A simple attack model

1: typedef void (*func_ptr)();

Runtime
2: void foo() {.} memory layout
3: int main() {
4: func_ptr* p = malloc(4); €@ p—| uninitialized |
5: func_ptr* q = pl;
6: *p = &foo;
7: free(p);
8: long int* r = malloc(4);
9: *r = userInput();
10: (*a)(); // UAF bug

33/115
Yulei Sui August 4, 2021

Use-After-Free Vulnerability
A simple attack model

1: typedef void (*func_ptr)();

Runtime
2. void foo() {.} memory layout
3: int main() {
4: func_ptr* p = malloc(4); p—>{ uninitialized |
5. func_ptr* q = p ; C:l q
6: *p = &foo;
7: free(p);
g8: long int* r = malloc(4);
9: *r = userInput();
10: (*a)(); // UAF bug

33/115
Yulei Sui August 4, 2021

Use-After-Free Vulnerability
A simple attack model

1: typedef void (*func_ptr)();

Runtime
2: void foo() {.} memory layout
3. int main() {
a: func_ptr* p = malloc(4); p—>1 &foo |
5. func_ptr* q = p ; q
6: *p = &foo; e
7: free(p);
8: long int* r = malloc(4);
9: *r = userInput();
10: (*a)(); // UAF bug

33/115
Yulei Sui August 4, 2021

Use-After-Free Vulnerability
A simple attack model

N

[any

Yulei Sui August 4, 2021

. typedef void (*func_ptr)();

O VWO NOUV W

Runtime

. void foo() {..} memory layout

int main() {

func_ptr* p = malloc(4); p—>1 &foo]
func_ptr‘* a="pr; Memory freed and become available
*p = &foo;

free(p); a
long int* r = malloc(4);

*r = userInput();

(*a)(); // UAF bug

33/115

Use-After-Free Vulnerability
A simple attack model

1: typedef void (*func_ptr)();

Runtime
2: void foo() {.} memory layout
3. int main() {
4 func_ptr* p = malloc(4); p
5. func_ptr* q = p ; q
6: *p = &foo;
7: free(p);
8: long int* r = malloc(4); <:| r
9: *r = userInput();
10: (*a)(); // UAF bug

33/115
Yulei Sui August 4, 2021

Use-After-Free Vulnerability
A simple attack model

1: typedef void (*func_ptr)();

Runtime
2. void foo() {..} memory layout
3. int main() {
4: func_ptr* p = malloc(4); p
5. func_ptr* q = p ; q
6: *p = &foo;
7: free(p);
8: long int* r = malloc(4); r
9: *r = userInput();
10: (*a)(); // UAF bug
}
] 33/115

Yulei Sui August 4, 2021

Related Work — Dynamic Approaches

¢ Detection
® Full memory safety: e.g., CETS [ISMM’10]
® Taint tracking: e.g., Undangle [ISSTA'12]
® Redzone: e.g., AddressSanitizer [Usenix ATC'12]
® QOptimization: e.g., DangSan [EuroSys’'17]
¢ Mitigation
® Safe allocator: e.g., DieHarder [CCS’10], Cling [Security’10], FreeGuard
[CCS’17]
® Safe deallocator: e.g., VTPin [ACSAC’16]
* Nullification: e.g., DangNull [NDSS’15], FreeSentry [NDSS’15]
® Control-flow integrity: e.g., CFI [CCS’05], PathArmor [CCS’15], ShrinkWrap
[ACSAC’15]

e 34/115
Yulei Sui August 4, 2021

Related Work — Static Approaches

Early detection and zero runtime overhead

Buffer overflow E.g., Archer [FSE’03], Marple [FSE’'08], Parfait [FSE’10]
Memory leak E.g., Saturn [FSE’05], FastCheck [PLDI'07], Saber [ISSTA'12]
Information flow E.g., TAJ [PLDI'09], Merlin [PLDI'14], DroidSafe [NDSS’15]

Data race E.g., RacerX [SOSP’03], LockSmith [PLDI'06], DroidRacer
[PLDI'14]

e UAF Relatively unexplored

e 35/115
Yulei Sui August 4, 2021

Typestate Analysis for Memory Safety

® A static approach using automata as the specification by capturing spatio-temporal correlations

simultaneously.
® control-flow-reachability (temporal property): free (p) can reach use(q) along control-flows
® pointer analysis (spatial property): p and q are aliases (pointing to the same object)

® Spatio-temporal correlation is too strong for efficiently analysing large-size program.
® —php-5.6.8: 1,391 frees x 244,917 uses = 340 million pairs with billions of calling contexts.

use free

use/free

malloc

Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao Qin, Hongxu Chen and Yulei Sui. Typestate-Guided Fuzzer for

Discovering Use-after-Free Vulnerabilities. (ICSE 2020)

Hua Yan, Yulei Sui, Shiping Chen and Jingling Xue. Spatio-Temporal Context Reduction: A Pointer-Analysis-Based Static Approach for Detecting
Use-After-Free Vulnerabilities. (ICSE 2018)

Hua Yan, Yulei Sui, Shiping Chen and Jingling Xue. Machine-Learning-Guided Typestate Analysis for Use-After-Free Detection. 33th Annual Computer
Security Applications Conference (ACSAC 2017)

36/115

Yulei Sui August 4, 2021

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)
Insights: Leverage historical bug patterns and programming experience
Alike and predictable with some common characteristics

1: void fun() { 1: void fun() {
2: e 2: e
3 for(...) { 3 p = malloc(...);
4: p = malloc(..); 4: for(...) {
5 use(p); //Likely false UAF 5 use(p); //Likely true UAF
6 free(p); 6 free(p);
} }
} }

e 37/115
Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)
Insights: Leverage historical bug patterns and programming experience

1: void foo(Apple* p) { 1: void foo(Apple* p) {
2: free(p); 2: free(p);
} }
3: void bar(Orange* q) { 3: void bar(Apple* q) {
4: use(q);//Likely false UAF 4: use(q);//Likely true UAF
} }
| 37/115

Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)
Insights: Leverage historical bug patterns and programming experience

1: void fun() { 1: void fun() {
2: e 2: v

3: if (Cnd) { 3: if (Cnd) {
4: free(p); 4: free(p);
5: p = null; 5:

6: } 6: }

7: e 7:

8: if (p !'= null) { 8:

9: use(p);//Likely false UAF 9: use(p);//Likely true UAF
10: } 10:

} }

e 37/115
Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)
Insights: Leverage historical bug patterns and programming experience

1: void foo(Apple* p) { 1: void foo(Apple* p) {
2: free(p); 2: free(p);
} }
3: void bar(Apple* q) { 3: void bar(Apple* q) {
4: use(q);//Likely false UAF 4: use(q);//Likely true UAF
} }
Imprecise static Precise static
over-approximation over-approximation
pt(p) = {01, 05, ...,0100}
pt(p) = {04}
pt(@) = {0100, 0101, -+ 0200}
pt(q@) ={o4}
| 37/115

Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis
Feature Engineering

e 35 Features in 4 groups
e Type information
* E.g., array, struct, container, global, type compatibility
Control flow
* E.g., loop, recursion, distance, dominance, use before free
Common characteristics
* E.g., nullification, flags, reallocation, address comparison
Classification using machine learning
* E.g., size of points-to set, #UAF@free, #UAF@use, #aliases, points-to cycles

e 38/115
Yulei Sui August 4, 2021

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)

Feature Engineering: Leverage historical bug patterns and programming experience since many use-free patterns

are alike and predictable with some common characteristics

Group |m| Feature | Type | Description

1 Array | Boolean | o is an array or an element of an array
2 Struct | Boolean | o is a struct or an element of a struct
3 Container | Boolean | o is a container (e.g., vector or map) or an element of a container
4 TsLoad | Boolean | use(g) is a load instruction
‘Type Information | 5 IsStore | Boolean | use(g) is a store instruction
6 IsExtCall | Boolean | use(g) is an external call
7 GlobalFree | Boolean | free(p), where p s a global pointer
8 GlobalUse | Boolean | use(q), where g s a global pointer
9

c Boolean | p and g are type-compatible at free(p) and use(q)
0 InSameLoop | Boolcan | free(p) and use(q) are in the same loop
1 InSameRecursion | Boolean | free(p) and use(q) are in the same recursion cycle
12| #FunctioninBetween | Integer | number of functions in the shortest path from free(p) to use(q) in the program’s call graph
Control Flow 13 Diffteration | Boolean | use(q) appears after free(p) via a loop back-cdge
14 Dom | Boolean | free(p) dominates use(q)
15 PostDom | Boolean | use(q) post-dominates free(p)
16 #IndCalls | Integer | number of indirect calls in the shortest path from free(p) to use(q) in the program’s call graph
17 UseBeforeFree | Boolean | a UAF pair, fiee(p) and use(q), is also a use-before-free
18 NullifyAfterFree | Boolean | pis set to null immediately after free(p)
19 ReturnConstint | Boolean | a const integer is returned after free(p)
20 ReturnBoolean | Boolean | a Boolean value is returned after free(p)
Common o . : "
Progromming | 2! Casting | Boolean | pointer casting is applied to g at use(q)
proste 22 ReAllocAfterFree | Boolean | p is redefined to point to a newly allocated object immediately after free(p)
23 RefCounting | Boolean | o is an reference-counted object
24 ValidatedFreePtr | Boolean | null checking for p before free(p)
25 ValidatedUsePtr | Boolean | null checking for g before use(q)
26 | SizeOfPointsToSetAtFree | Integer | number of objects pointed to by p at free(p)
27| SizeOfPointsToSetAtUse | Integer | number of objects pointed to by g at use(g)
28| #UAFSharingSameFree | Integer | number of UAF pairs sharing the same free(p)
29| #UAFSharingSameUse | Integer ing the same use(q)
Points-to #Aliases | Integer | number of pointers pointing to o

AllocInLoop | Boolean
AllocInRecursion | Boolean

LinkedList | Boolean n a points-to cycle (signifying its presence in a linked-list)

SamePointer | Boolean | pand gat free(p) and use(q) are the same pointer variable
DefinedBeforeFree | Boolean | g at use(q) is defined before frec(p)

e 39/115
Yulei Sui August 4, 2021

Information
sion

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis
Support Vector Machine — Two-Class SVM

Oprinel septting

Figures shamelessly stolen from:
http://blog.hackerearth.com/simple-tutorial-svm-parameter-tuning-python-r

Yulei Sui August 4, 2021

40/115

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)

Framework

Q?i%g Cross
@ ﬁ} Validation
@‘] True UAF Features —
Tr‘ammg\@—> @

False UAF Features

Pre- L Typestate
@ %AnalysisH Sz Analysis }_’
Target 1o
Program Main Analysis
Bug Report Phase

Training
Phase

Feature
Extraction

41/115

Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)
Framework

5 IV Cross Training |
: Tk Validation Phase |
: @‘] True UAF Features . :
g Training @—» @) i
! Samples Guide
. False UAF Features !

Feature

Pre- F Typestate
@ %AnnlysisH Slfatiz H Xﬁulysis Extraction
Target
Program é Main Analysis
Phase

41/115
Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)

Framework

@ AN Cross | Training |
' ﬁ} Validation Phase |
: @‘] True UAF Features . :
Tr‘ammg\@—>) i
' Samples Guide
| False UAF Features H
Pre- - Typestate Feature |
@ %AnalysisH L Analysis Extraction |
Target
' Program Main Analysis |
Bug Report S

Yulei Sui August 4, 2021

41/115

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)

Framework

@_ﬁ%

fof

True UAF Features

E@@\@é@

False UAF Features

Cross
Validation

g A

Phase

H Slicing H fyResicle

Analysis

Feature

Yulei Sui August 4, 2021

Samples
: Pre-
} Analysis
Target
i Program

= -
Bug Report S

Training

Extraction

41/115

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)

Framework

@ AN Cross | Training |
' ﬁ} Validation Phase |
: @‘] True UAF Features . :
Tr‘ammg\@—.)
' Samples Guide
| False UAF Features H
Pre- - Typestate Feature |
@%Analysis L Analysis Extraction |
: Target For each 3
1 Program "';,S.afte Main Analysis |
i objec i
Bug Report S

Yulei Sui August 4, 2021

41/115

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)

Framework

f AN Cross | Training |
@) Validation Phase |
: @‘] True UAF Features . :
! Trainin \@ |
i Sampleg [L/:j Given <free(p), use(q)>, !
: False UAF Features ifp and q are aliases? ;

CIITITIIIIIIITIIIIIIIITIIITIIIITITIIIIIITITICIIIIIIIIIIIIIIIIIT Demand-driven :::::

flow-sensitive
@ 4_{ Pre- H slicing H Typestate Feature
Analysis Analysis Analysis—"yes | Extraction
Target -/ o
Program Main Analysis
Phase

Bug Report

41/115
Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/acsac17.pdf

Machine-Learning-Guided Typestate Analysis (ACSAC ’17)

Framework

' @_,% Cross Training |
' ﬁ} Validation Phase |
: @‘] True UAF Features t—— :
! Trainin \@—>
: Sampleg @ Guide| Given <fiee(p), use(q)>,]
| False UAF Features ifp and q are aliases? ;

Pre- L Typestate Feature

@ 4'{Analysis Slfatiz Analysis Extraction

Target P
Program Main Analysis
Bug Report AT

41/115
Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/acsac17.pdf

Platform

¢ Implemented based on our SVF framework [CC ’16] and used our
demand-driven pointer analysis [FSE *16]
® Started since early 2014, actively maintained. Publicly available at :
http://svf-tools.github.io/SVF with over 2K downloads.

® Implemented on top of LLVM compiler (the latest version 7.0.0) with over 100KLOC C/C++ code and
230+ stars on Github.

® Invited for a plenary talk in EuroLLVM 2016, FSE Platinum Artifact Award 2016 and ICSE
Distinguished Paper 2018.

® Serves as a foundation for developing other analyses, with participants and contributors from both
industry and academia, including UIUC, UCSB, IBM, Google, Qualcomm and Veracode.

e Third-party libraries
® LLVM Compiler IR
® Pointer Analysis [FSE '16]
® SMT-solver z3
® Machine learning libSVM

e 42/115
Yulei Sui August 4, 2021

http://svf-tools.github.io/SVF

Machine-Learning-Guided Typestate Analysis

Training
Samples Results
Program [#True #False | Accuracy Precision Recall
rtorrent 46 69 88.6% 81.0% 93.4%
less 22 237 96.9% 77.0% 91.0%
bitlbee 52 31 90.4% 86.7% 100.0%
nghttp2 43 61 82.7% 75.5% 86.0%
JTS-C 138 138 96.4% 97.8% 94.9%
JTS-C++ 322 322 97.4% 97.2% 97.5%
Total 623 858 95.0% 92.6% 95.8%

® True bugs training samples

® Juliet Test Suite
® Dynamically verify use-before-free instances
® Manual injection

® False positive training samples
® Juliet Test Suite

® Tac-NML (typestate analysis without machine learning)
® Manual inspection
|

Yulei Sui August 4, 2021

43/115

Testing

Program | Version Language LOC #Frees #Uses

rtorrent 0.96 C++ 13,036 118 3,039
less 451 C 27,134 86 7,902
bitlbee 4.2 C 68,413 201 5,897
nghttp2 | 1.6.0 C++ 71,387 29 7,566
mupdf 1.2.337 C++ 122,481 253 105,911
h2o 1.7.2 C++ 517,731 896 150,887
Xserver 1.14.3 C 568,964 1,675 90,841
php 5.6.7 C 709,356 1,391 244,917
Total - - 2,098,502 4,649 616,960

Yulei Sui August 4, 2021

44 /115

Machine-Learning-Guided Typestate Analysis

Results

Program | #Cand #WNML Rl #wTae R2 Time(s) #True FPR TPR
rtorrent 803 229 71.5% 0 100.0% 90 0 - -
less 4,628 790 82.9% 3 99.6% 316 1 66.7% 33.3%
bitlbee 529 113 78.6% 16 85.8% 151 9 43.8% 56.3%
nghttp2 975 210 785% 16 92.4% 83 7 56.3% 43.8%
mupdf | 21,701 1,658 92.4% 50 97.0% 197 19 62.0% 38.0%
h2o 18,143 3,559 80.4% 23 99.4% 6,205 9 60.9% 39.1%
xserver | 53,258 6,706 87.4% 102 98.5% 2,053 40 60.8% 39.2%
php 26,306 5818 77.9% 56 99.0% 5,942 24 57.1% 42.9%
Total | 126,343 19,083 — 266 — 15037 | 109 sgB aisE
#Cand: Number of candidate UAF pair by pre-analysis Known bugs New bugs
WM Number of warnings by Tac without machine learning | Program Identifier Detected | #Detected

WWTAC; Number of warnings by Tac rtorrent —_ —_ 0

FPR: False positive rate less - - il

TPR: True positive rate bitlbee CVE-2016-10188 v 0

aCand— nghttp2 | CVE-2015-8659 v 0

S T R mupdf BugID-694382 v 0

r = BT h2o CVE-2016-4817 v 5

xserver | CVE-2013-4396 v 0

php CVE-2015-1351 v 2

Yulei Sui August 4, 2021

45/115

Outline

¢ Existing software bugs and vulnerabilities
e Automated static analysis and dynamic analysis
® SVF: Value-flow analysis framework
* Value-flow analysis to detect memory corruption errors
e Learning-based software security analysis
® Case study 1: boost the performance of existing detectors
® Machine-learning-guided type-state analysis to detect use-after-free vulnerabilities
e Case study 2: rapid prototyping via code embedding
® Code summarization, and vulnerability detection via code embedding

e 45/115
Yulei Sui August 4, 2021

Code Embedding

¢ Distributed representation
® Distributed representation of words (Word2Vec) and documents (Doc2Vec). Unlocking
the potential of deep learning and NLP.
® Local representation (object as a single representational element); distributed
representation (object as a feature vector)

Object Local representation Distributed representation
small apple 1 [-0.2,-0.2, 0.0, 0.1]

big apple 2 [-0.1,-0.2, 0.0, 0.1]
orange 3 [-0.1, 0.5, 0.0, 0.3]

car 4 [0.0, 0.0, 0.5, 0.1]

* An object’'s meaning is distributed across its vector components. Semantically similar
objects are mapped to close vectors.

¢ Code embedding

® Learning distributed vector representations for code (e.g., via neural networks).
® Capture correlations between code snippets and code semantics in a natural and
effective manner.

e 46 /115
Yulei Sui August 4, 2021

Code Embedding

Code Property

Source Code Model c e
Prediction
int* ____(int[] myArray, int size)
{
for (int i = 0; i < size; i+)= -p
myArray[i] = i;
return myArray;
}
47 /115

Yulei Sui August 4, 2021

Code Embedding

Semantic

Source Code Model Label

int* ____(int[] myArray, int size)

; —
for (int i = 0; i < size; i+)= -p Oinitialize
myArray[i] = i;

return myArray;

48/115
Yulei Sui August 4, 2021

Code Embedding

Model

semantic e .
label Qhinitialize Oswap Osort
code | </>
. Source code Source code
snippet) #3

e 49/115
Yulei Sui August 4, 2021

Code Embedding

Code semantic vector in geometric space

Model
semantic
label Qhinitialize Oswap Osort
code ‘ < /> H </> ‘
A Source code Source code
snippet | 2
code ‘
semantic [Tg.4, 3.5 .7] [3.5, 1.2 .| [4.3, 0.8]
vectors

e
Yulei Sui August 4, 2021

50/115

Code Embedding

Code semantic vector in geometric space

Model

semantic e

label Qhinitialize Oswap Osort

code | < /> </>

A Source code source code
snippet #2

)

code ‘
semantic [Tg.4, 3.5 .7] [3.5, 1.2 .| [4.3, 0.8]
vectors N v)

o |/

\d

L]
/Mt

2D-embedding space

51/115
Yulei Sui August 4, 2021

Code Embedding

Code semantic vector in geometric space

Model

semantic e

label Qhinitialize Oswap Osort

code | < /> </>

A Source code source code
snippet #2

)

code ‘
semantic [Tg.4, 3.5 .7] [3.5, 1.2 .| [4.3, 0.8]
vectors N v)

2D-embedding space

52/115
Yulei Sui August 4, 2021

Code Embedding

Code semantic vector in geometric space

New code Model
semantic
Label Qhinitialize Oswap Osort
code |\ </> </>
charx ___(char[] cArray, int size) snippet Sourf:zcode Source code
{ ,
int i = 0; code
while (i < sizg) semantic [0.4,3.5.7] [3.5, 1.2 1] (5.3, 0.8 2]
cArray[i] = i; vectors AN \ K
i+ . . .
return cArray; s . N K
) i \[0.5, 2.8 .. \initialize : .

2D-embedding space

e 53/115
Yulei Sui August 4, 2021

Code Embedding

Code semantic vector in geometric space

New code Model Semantic label
semantic
label Qhinitialize Oswap Osort
code | </> </>
charx ___(char[] cArray, int size) snippet 5°"";2 code Source code e
{)
int i = 0; code
while (i < size) semantic [p.4 3.5 . 3.5, 1.2 . %.3, 0.8 .
cArray[i] = i; vectors L S SRNE ' -] L j » Oin1t1a112e
i+ N ! .
) return cArray; \[0.5, 2.8 “:‘\ ',,

2D-embedding space

e 54/115
Yulei Sui August 4, 2021

Existing Embedding Approaches

Structure-oblivious embedding

[1,2]
Source code -> A bag of ‘sentences’

intx ____(int[] myArray, int size)
{
for (int i = 0; i < size; i++)
myArray[i] = i;
return myArray;

[1] Distributed representations of words and phrases and their compositionality. In NeurIPS '13

[2] Distributed representations of sentences and documents. In ICML ‘14

e 55/115
Yulei Sui August 4, 2021

Existing Embedding Approaches

Structure-oblivious embedding

[1,2]
Source code A bag of ‘sentences’

‘ intx ____(int[] myArray, int size)‘ - int (int[lmyArray,int size)

for (int i = 0; i < size; i++)
myArray[i] = i;
return myArray;

[1] Distributed representations of words and phrases and their compositionality. In NeurIPS '13

[2] Distributed representations of sentences and documents. In ICML ‘14

e 56/115
Yulei Sui August 4, 2021

Existing Embedding Approaches

Structure-oblivious embedding

[1,2]
Source code A bag of ‘sentences’
‘ intx ____(int[] myArray, int size)‘ wp [int[*] ___J(Jint][[J[myArray [, [int[size])]

for (int i = 0; i < size; i++)
myArray[i] = i;
return myArray;

[1] Distributed representations of words and phrases and their compositionality. In NeurIPS '13

[2] Distributed representations of sentences and documents. In ICML ‘14

e 57 /115
Yulei Sui August 4, 2021

Existing Embedding Approaches

Structure-oblivious embedding

[1,2]
Source code A bag of ‘sentences’
intx ____(int[] myArray, int size) [Ent][*[___J(Jint][[1][myArray [, [int[size])]

{

myArray[i] = i;

for (int i = 0; i < size; i+) [for[(Tint]i[=]0] ...]
return myArray;

) I

[1] Distributed representations of words and phrases and their compositionality. In NeurIPS '13

[2] Distributed representations of sentences and documents. In ICML ‘14

e 58/115
Yulei Sui August 4, 2021

Existing Embedding Approaches

Structure-oblivious embedding

[1,2]
Source code A bag of ‘sentences’ Embedding
Vectors
intx ____(int[] myArray, int size) [t [* [I [int[(1] myarray [, [int[size)] —— Projectiosode vector

{

myArray[i] = i;

for (int i = 0; i < size; i+) [for[(Tint]i[=]0] ...]
return myArray; :

) I

[1] Distributed representations of words and phrases and their compositionality. In NeurIPS '13

[2] Distributed representations of sentences and documents. In ICML ‘14

e
Yulei Sui August 4, 2021

59/115

Existing Embedding Approaches

Structure-oblivious embedding

[1,2]
Source code A bag of ‘sentences’ Embedding
Vectors
int* ____(int[] myArray, int size) [t [* [I [int[(1] myarray [, [int[size)] —— Projectiosode vector

myArray[i] = i;

for (int i = 0; i < size; i+) [for[(Tint]i[=]0] ...]
return myArray;

) I

charx ___(char[] cArray, int size)
{
int i = 0;
hil i i . . .
" lczria;[;]sizi) Textually different but semantically equivalent
i+

return cArray;

}

[1] Distributed representations of words and phrases and their compositionality. In NeurIPS '13

[2] Distributed representations of sentences and documents. In ICML ‘14

e
Yulei Sui August 4, 2021

60/115

Existing Embedding Approaches

Structure-preserving embedding

[31]
Source code Abstract Syntax Tree

int* ____(int[] myArray, int size)
{
for (int i = 0; i < size; i++)
myArray[i] = i; ‘

return myArray;

[3] code2vec: Learning distributed representations of code. POPL .2019

61/115
Yulei Sui August 4, 2021

Existing Embedding Approaches

Structure-preserving embedding

Source code

intx ____(int[] myArray, int size)
{
for (int i = 0; i < size; i++)
myArray[i] = i;
return myArray;

[3
A bag of ‘paths’ on AST
declaration
Crorsti> \t‘
\ [int]

[O

path_1 [myArray]ReturnsT] Blocks |]

[3] code2vec: Learning distributed representations of code. POPL .2019

Yulei Sui August 4, 2021

1

62/115

Existing Embedding Approaches

Structure-preserving embedding

[3]
Source code A bag of ‘paths’ on AST

Method
declaration

Crorstne > N
N
n int

\'

intx ____(int[] myArray, int size)
{
for (int i = 0; i < size; i++)
myArray[i] = i;
return myArray;

path_1 [myArray|ReturnsT] Blocks | - . . .]
path_2 (int [var [Forstmt] |
path_n

EEnE

[3] code2vec: Learning distributed representations of code. POPL .2019

63/115
Yulei Sui August 4, 2021

Existing Embedding Approaches

Structure-preserving embedding

[3]
Source code A bag of ‘paths’ on AST

Method
declaration

intx ____(int[] myArray, int size)
{
for (int i = 0; i < size; i++)
myArray[i] = i;
return myArray;

Geetwrnst \:
S =

path_1 [myArray|ReturnsT] Block* |
path_2 (int [var [Forstmt] |
path_n

[3] code2vec: Learning distributed representations of code. POPL .2019

Yulei Sui August 4, 2021

/ i

64/115

Problems and Limitations
(a) Fail to capture asymmetric transitivity

(b) Alias-unaware

(c) Intraprocedural/context-insensitivity

e 65/115
Yulei Sui August 4, 2021

Problems and Limitations
(a) Fail to capture asymmetric transitivity

O—E—0©

program dependence graph

(b) Alias-unaware

(c) Intraprocedural/context-insensitivity

e 66/115
Yulei Sui August 4, 2021

Problems and Limitations
(a) Fail to capture asymmetric transitivity

A A—>B->C

B
¢ Vo' V> o
C—>B—>A

program dependence graph 2D-embedding Space

(b) Alias-unaware

(c) Intraprocedural/context-insensitivity

e 67/115
Yulei Sui August 4, 2021

Problems and Limitations
(a) Fail to capture asymmetric transitivity

O—E—0©

program dependence graph

A > B — C+/ Real reachability and correctly preserved
Vp© Ve o

C > B - AX Spurious reachability but imprecisely preserved

2D-embedding Space

(b) Alias-unaware

(c) Intraprocedural/context-insensitivity

e 68/115
Yulei Sui August 4, 2021

Problems and Limitations
(a) Fail to capture asymmetric transitivity

O—E—0©

program dependence graph

A > B — C+/ Real reachability and correctly preserved
Vp© Ve o

C > B - AX Spurious reachability but imprecisely preserved

2D-embedding Space

(b) Alias-unaware
(D).,
(c) Intraprocedural/context-insensitivity

A

oY
S

Yulei Sui August 4, 2021

69/115

Problems and Limitations
(a) Fail to capture asymmetric transitivity

O—E—0©

program dependence graph

A > B — C+/ Real reachability and correctly preserved
Vp© Ve o

C > B - AX Spurious reachability but imprecisely preserved

2D-embedding Space

(b) Alias-unaware
Memory alias .

o e e p c Vo Ve<0 A—>B» CX Real reachability but unsoundly preserved

-

ZDfembe—dding space

(c) Intraprocedural/context-insensitivity

A

oY
S

Yulei Sui August 4, 2021

70/ 115

Problems and Limitations
(a) Fail to capture asymmetric transitivity

O—E—0©

program dependence graph

A > B — C+/ Real reachability and correctly preserved
Vp© Ve o

C > B - AX Spurious reachability but imprecisely preserved

2D-embedding Space

(b) Alias-unaware

Memory alias
Ot

2D-embe‘dding space

c W VTc <@ A = B % CX Real reachability but unsoundly preserved

—

(c) Intraprocedural/context-insensitivity

(A\ ¥ (B 0. Vy - VB >0 A > C - Dy Real reachability and correctly preserved
) e) . Vy - VE > @ A — C - EX Spurious reachability but imprecisely preserved
A B *

a @ 2D-embedding space

71/115
Yulei Sui August 4, 2021

The Aim of This Work (oopsLA *20)

Precision
(Semantic depth)#

Flow2Vec: a high-order proximity
code-embedding approach by preserving
interprocedural alias-aware program

AST analysis dependence
tokens-based analysis

Value-flow analysis (our work)

P Learning efforts
(training, data, time)

e 72/115

Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/oopsla20.pdf

The Aim of This Work (oopsLA *20)

Precision
(Semantic depth){k

Value-flow analysis (our work) Flow2Vec: a high-order proximity
code-embedding approach by preserving
interprocedural alias-aware program
dependence

P Learning efforts
(training, data, time)

| Q
i LLVM p i
L R

73/115
Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/oopsla20.pdf

The Aim of This Work (oopsLA *20)

Precision
(Semantic depth){k

Value-flow analysis (our work) Flow2Vec: a high_order proximity
code-embedding approach by preserving
interprocedural alias-aware program

dependence
tokens-based analysis

P Learning efforts
(training, data, time)

"~ 7 (@) Pre-embedding ~~ | | (b) Value-flow reachability

! |
| ;
| |
! LLVM p | \ — Al
L e c
: we | ! AN
|
. Vol K

74/115
Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/oopsla20.pdf

The Aim of This Work (oopsLA *20)

Precision
(Semantic depth){k

Value-flow analysis (our work) Flow2Vec: a high-order proximity
code-embedding approach by preserving
interprocedural alias-aware program
dependence

P Learning efforts
(training, data, time)

" "7 (a) Pre-embedding =~ | | (b) Value-flow reachability | | (c) High-order proximity

embedding

[| ‘

[U } ‘
! L | ‘
I LLvM L0 T ! [
| IR > ng e : ! i
| e LA | |

|
. D! " . ‘

75/115
Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/oopsla20.pdf

The Aim of This Work (oopsLA *20)

Precision
(Semantic depth)#

Value-flow analysis (our work) Flow2Vec: a high_order proximity
code-embedding approach by preserving
interprocedural alias-aware program

° dependence
tokens-based analysis

P Learning efforts
(training, data, time)

" (b) Value-flow reachability
As matrix multiplication

| (c) High-order proximity [(d) App11cat1on'
embedding |

Code classification

Code summarisation

LLVM
IR

>

76/115
Yulei Sui August 4, 2021

http://yuleisui.github.io/publications/oopsla20.pdf

A Motivating Example

Phase (a) Pre-embedding

Ta: malloc(...);
1ot queue = malloc(...);
1a: p = initialize(stack); // csl
Loz q = initialize(queue); // cs2

%
-+
19
a
~
o

1s: initialize(x){
// initialization for
// objects that 'x' points to

Te: return x;

e 77/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (a) Pre-embedding

foo(){
Ta: stack = malloc(...);
1ot queue = malloc(...);
1s: p = initialize(stack); // csi
l.: g = initialize(queue); // cs2

// operations on 'stack’
// via pointer 'p'

1s: initialize(x){
// initialization for
// objects that 'x' points to

Te: return x;

Call site 1| P refers to stack
catt site 2[arefers to queue]

78/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (a) Pre-embedding

Loz
e J graph (IVFG)

interprocedural value-flow

Call site o[@ refers To aeve] | —> Gl value-flow |
[}

[}
I

79/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (a) Pre-embedding

Le:
o __ I graph (IVFG)

interprocedural value-flow

Call site 1| P refer to stack (mTmmooo—-———--o
Call site 2[q refer to queue] | —> Call value-flow
1
|

: —> Intra value-flow
| —» Return value-flow

80/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (a) Pre-embedding

Loz
e J graph (IVFG)

interprocedural value-flow

Call site o[@ refers To aeve] | —> Gl value-flow |
[}

[}
I

81/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (a) Pre-embedding

|
| i
| |
| | 111213 1415 16
} } 11000 0 (10
I } 14000 0 (20
} | 130 0 0 0 0
I } 140 0 0 0 0
1Lo: |inithatizeg \ 1000 00 1
| //\init] |
| bbjefts that 'x' points to ! 140 0)1)2 00
| |
s 1 . A
| } | interprocedural value-flow Symbolic
o ! graph (IVFG) Adjacency

matrix
Gl site i[Frcfers tosme] j--=-—---—----—o

I
I
alt site 2[4 refers to qveve] | —> Gl valve-flow |
I
! I

82/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (b) Value-flow reachability as matrix multiplication

111213 1415 e
00 0 (

e
ISESESESESES)
ISESESESES)
[SESN SN
ocreooese

~
fhry

~
N

Symbolic
Adjacency matrix

|

83/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (b) Value-flow reachability as matrix multiplication

Yulei Sui August 4, 2021

T1l213 1
00

S
—
w«
—~
)

1)

[SECSESESS S

SRS S
N

~
fhry

[SECSISIS

0
0
0
0
0

el vl el
ocreooese

)2
A

Symbolic
Adjacency matrix

xh
The power of matrix
h-th order reachability

84/115

A Motivating Example

Phase (b) Value-flow reachability as matrix multiplication

Yulei Sui August 4, 2021

T1l213 1
00

S
—
w«
—~
)

1)

[SECSESESS S

SRS S
N

~
fhry

[SECSISIS

0
0
0
0
0

el vl el
ocreooese

)2
A

Symbolic
Adjacency matrix

xh
The power of matrix
h-th order reachability

Tl T3 T Ts Te
110 0 0 0 0 (1%1
1200 0 0 0 0 (2%1
130 0 0 0 0 0
140 0 0 0 0 0
15/0 0 1x)11x)20 0
6|0 0 © o 0 0
A2=A.A Matrix
multiplication

85/115

A Motivating Example

Phase (b) Value-flow reachability as matrix multiplication
" tack quewe ‘ Ll 13 L 1s e

A

Symbolic i Aie = (11

Adjacency matrix

| |

l Ll Wls e | oo o o 0 [(1xl

I | 12|00 0 0 0 (2%1

! ueoo o (10| Blee o o o o

| 12000 0 (2 0|, wWoo o o o o

1 lyeoo 00 0, 150 0 1%)1 1%)2 0 0

| 15000 00 1| .

! 140 0)1)20 0] ! A2=A A Matrix
} | multiplication
|

|

|

|

xh
The power of matrix
h-th order reachability

86/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (b) Value-flow reachability as matrix multiplication
7777777777777777777777777777 ‘ Ll 13 L 1s e

Adjacency matrix

! I
| Ll Lals l6 | (1%1

‘ ! (2%1

! 1Wooo o0 (10 | 0

| 12000 0 (2 0|, 0

| 3000 00 0f, 0

| 140 00 00 0 0

| 1H{ooo oo 1|)]

! 160 0)1)20 0f! Matrix

| | multiplication
[A

} Symbolic

|

\

xh
The power of matrix
h-th order reachability

87/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (b) Value-flow reachability as matrix multiplication

Yulei Sui August 4, 2021

T1l213 1
00

S
—
w«
—~
)

N
[SESEST SRS S
[SESESRSES]
~
fhry

(N

[SECSISIS

0
0
0
0
0

el vl el
ocreooese

)2
A

Symbolic
Adjacency matrix

xh
The power of matrix
h-th order reachability

1

(SESESESESES]

14 1sle

0 (1%1%)1 (1%x1x)2 0 0
0 (2%1x)1 (2%1%x)2 0 0

il 13

0 0

0 0

0 0

0 0
AS=A.-A A

0 00

0 00

0 00

0 00
Matrix

multiplication

88/115

A Motivating Example

Phase (b) Value-flow reachability as matrix multiplication

T1l213 1
00

S
—
w«
—~
)

N

[SESEST SRS S
[SESESRSES]

(N

~
fhry

0
0
0
0
0

[SECSISIS

el vl el
ocreooese

A3=A.A. A Matrix

multiplication

)2
A

|

Symbolic } Ai;; = (1*1%); feasible path of length 3
I
|

Adjacency matrix

xh
The power of matrix
h-th order reachability

89/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (b) Value-flow reachability as matrix multiplication

IVFG Adjacency matrix

| stack queue | Ll

e T2l e ls L6 | 1[0 0 (1x14)1

\ I 1210 0 (2%1

! 14000 0 (10! BGlo o

| Looo o (o0, 10 0

} infeasiblel 130 0 0 0 0 O } 1sl0 o

! Path | 14000 00 O 1o o

| {000 00 1|

! 160 0)1)20 0! AS=A-A-A Matrix
} 13 @ A } multiplication
i q svbotic | Ay = (11 ()40

|

|

Az{'4 = 1*1* infeasib'le path of length 3|

xh
The power of matrix
h-th order reachability

Yulei Sui August 4, 2021

90/115

A Motivating Example

Phase (b) Value-flow reachability as matrix multiplication

| | lil2 13 s 1516
| w FPEIY

Ulals Luls 1o | 1110 @ (1x1%)1[{r+14)2] 0 0
1 w 12| 0 0FGxt1| (2%1%)2/ 0 0
} Weoo o (1o Lloo o o 00
| 1000 0 (2 0f, lo o 0 0 00
1 lyeoo oo o oo o 0 00
| 15000 00 1|
! 140 0)1)20 0! A=A-A-A Matrix
| | multiplication
I A I
| Symbolic !
} Adjacency matrix }
| |

L:C=CC|laC)i]|...|(C)nle context-free language

n - - entering a method from m
[cattsite i (] [callsite i)i & @ ¢
() and exits from@back to|callsite i)s

91/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (b) Value-flow reachability as matrix multiplication

Adjacency matrix

U stack quewe | il 13 14 1516
l Ll Lls t6 | L 0
\ ! 12 0 0] 0
} 140 00 0 (l 0 } 13 0 0 7 0
| 1000 0 (2 0f, lo o 0 0 00
1 lyeoo 00 0, oo o 0 o0
} 4000 00 0 Lloo o o 00
| 1000 00 1))

! 160 0)1)20 0] ! A3=A-A.A Matrix
| | multiplication
I A I

} Symbolic }

| |

| |

92/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (c) High-order proximity embedding
111213 1s1s le Tila 13 & 15 e il 13 4 1sle

14000 0 (10 1100 0 0 0 (1x1 110 0 (1x1%)1 (1%1%)2 0 0

12000 0 (20 12/00 0 0 0 (2% 12/ 0 @ (2%x1x)1 (2%1%)2 0 0

1000 00 0 300 0 o 0 0 1310 0 0 0 00

14000 00 0 weo 0 o 0 o 140 0 0 0 00

5000 00 1 15/0 0 1x)11%)20 @ 15(0 0 0 0 00

160 0)1)20 0 16|00 06 0 0 0 16/ 0 0 0 0 00
A AZ=A-A AS—A-A-A

[katz tncex] M=YF (8- A)* =0.8- A +0.82 A2 +0.8° - A®

93/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (c) High-order proximity embedding
111213 14 1s le Tila 13 s 1s e il 13 14 1516

1o 00 0 (10 1100 0 0 0 (1% 11/ 0 0 (1%x1x)1 (1%1%)2 0 0
wooo oo 1200 0 0 0 (2% 12| 0 0 (2%1x)1 (2%1%)2 0 0
1Wooo o0 o oo o o0 o0 o0 1310 0 0 0 00
140 00 00 0 1.:/00 0 (1] 0 0 140 0 0 0 00
1000 00 1 15|0 0 1x)11%x)20 @ 15|10 0 0 0 00
1@ 0)1)20 © 160 0 0 o 0 0 16| 0 0 0 0 00
A A2—A-A A3—A-A-A
_ -
M=Y1, (8- A) =[08] A +0.87 A2 +[0.87- A
1112 12 lsa 1s 1a
1[0 p[0.512%(1%1%)1 ’mm |@.8*(1 0. 64%(1%1
T TTCRTT Ty 12| 0 @852 +Eoxtrrl 0.512%(2%1%)2 [0.8%(2 0.64*(2x1
value-flow 13(0 9 0 0 0 0
reachability 1|0 9§ (1] (1) (1] (1]
matrix 15| 0 9[0.64%x1%)1 0.64*1%)2 [} 0.8
16| 0 | 0.8%) 0.8%)2 0 0

94 /115

Yulei Sui August 4, 2021

A Motivating Example
Phase (c) High-order proximity embedding
111213 1s1s le

1410 0 0 0 (1 0

10 00 0 (20

133000 00 0

140 00 00 0

1550 00 00 1

160 0)1)20 ©
A

Ll 13 s 15
111060 06 0 0
12100 06 0 0
1300 06 0 0
.00 0 (1} 0
15/0 0 1%)1 1x)2 0
1600 06 0 0

A2=A-A

16

(1%1
(2%1]

(SESESRS

1
12
13
4
s
16

M=, ,(8-A)"=08-A+08 A2+0.8°-

Context-sensitive
value-flow
reachability
matrix

Yulei Sui August 4, 2021

Tily_ 13 1a 15 1a
140 0/|0.512 o 0.8 0.64
120 0 0 |0.512 |0.8 0.64
130 0 0 0 0 0
140 0 0 0 0 0
150 0 0 0.8
160 0/10.8 0.8 0 0

Ll 13 4 1s1le
0 0 (1%x1%)1 (1x1x)2 0 0
0 0 (2%1%)1 (2%1%)2 0 @
00 0 0 00
00 0 0 00
00 0 0 00
00 0 0 00
AS=A.A-A
1;3

95/115

A Motivating Example
Phase (c) High-order proximity embedding
111213 1415 s Til2 13 s 1s 16 Ll 13 14 1516

1o 00 0 (10 100 0 0 0 (1% 11/ 0 0 (1x1x)1 (1%1%)2 0 0

1ooo 0(:o0 12000 06 0 0 (2%1 12/ 0 0 (2x1%)1 (2%1%)2 0 0

o000 00 0 L3300 06 0 0 0 130 0 0 0 00

140 00 00 0 1.:/00 0 0 (1} (1] 140 0 0 0 00

15000 00 1 150 0 1%x)11%x)20 0 150 0 0 0 00

160 0)1)20 0 1|0 0 0 o 0 0 16| 0 0 0 0 00
A AZ=A-A A*—A-A-A

M= ,(8-A)"=08 A+08 A2+08% A®

12 3
1 ;16 0151 p 0.5 0.64 Example: 11 to 13
_ 1 7 0.512 0.8 0.64
Contveaxltu—es_equ;'ltlve 140 0 0 0 0 0 Reachability from 11 to 13:
reachability 1400 0 o 0 0 M, 3 =0-8~A1,3+0.82~A¥,3+U.83-
matrix 140 0 0.64 0.64 © 0.8 :OS*O+082*0+083*=0512
160 0 0.8 0.8 0 0 : : : .

96/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (c) High-order proximity embedding

e 97 /115
Yulei Sui August 4, 2021

A Motivating Example

Phase (c) High-order proximity embedding

Singular Value Decompose

M~USVT =YY guv] =D DT
Vo1 -u, -, /6K -ug] =[df, - ,d}]

D° =
D — [31 Vi, VoK V] = [+]

e 98/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (c) High-order proximity embedding

140 0 0.512 0@ 0.8 0.64 i Singular Value Decompose
} gg g 03123& %643 M~USVT =V oruv] —D*-DIT
4o o0 0 o 0 0 |l|p°=[ver-u, oK uk] = [d,--- ,d%]
{ g g 824 824 g 0(.7,8 i D' = [\/o1- Vi, /oK - vk] = [df, -+, d}]
- |
|

-0.51 -0.49 -0.69'0 0 0 0 0 0 000
0.51 -0.49 -0.69 10 0 0 0 0 0 1000
0 0 0 0o -0.51 0.49 -0.69,0 0 0
0 0 0 1000 0.51 0.49 -0.69'0 0 0
0 0.33 -0.79,0 0 0 0 -0.71 -0.5810 0 0
0 0.71 -0.58'0 0 0 0 -0.33 -0.79!0 0 0

D# D¢

e 99/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (c) High-order proximity embedding

Singular Value Decompose

M~USVT =YY guv] =D DT
[Vo1 -, oK ug| =[df, - ,d%]

D*® =
D = [o1 - Vi, oK - vk] = [df, -+, d}]

Reachability between
-0.51 -0.49 -0.6910 0 0 0) o 000 iandj
0.51 -0.49 -0.69 10 0 0 0 0 0 1000 s
0 0 @ 000 |-0.51 0.49 -0.69,0 0 0 d; 'dj
0) 0 1000 0.51 0.49 -0.69'0 0 0
0 0.33 -0.79,0 0 0 0 -0.71 -0.5810 0 0
0 0.71 -0.58'0 0 0 0 -0.33 -0.79!0 0 0
D# D¢

100/ 115
Yulei Sui August 4, 2021

A Motivating Example

Phase (c) High-order proximity embedding

d; [Fe.51 -0.49 -0.6910 0 0
0.51 -0.49 -0.69,0 0 0
|
8 g g :g g g Reachability Path length
0 0.33 -0.79,0 0 0 ds-dt’ o075 1
@ 0.71-0.5810 0 0 s
D? T
) ds-dy =0.71 2
0 0 0 100 0 T
0 0 @ 10 dj-d; +0.5 3
di|Fg.51 .49 -0.69,0 00
di[0.51 0.49 -0,60/10/0 4 ds-dt’ =|=0.02| [infeasible
difle -0.71 -0.58/(0 &0
dille -0.33 -0.79 0 0]

101/115

Yulei Sui August 4, 2021

A Motivating Example

Phase (c) High-order proximity embedding

BlockSmpt

‘1 stack I ExpressSmptI BlockSmpt I ExpressSmpt I q V

infeasible dependence relation between “stack™ to q°

102/115
Yulei Sui August 4, 2021

A Motivating Example

Phase (d) Value-Flow Vector and Applications

Qo o
© © L)
Seosoeoss
T [
ey o0 -
& 3 ™~
cSoosees
T

o

b n

eoosee

el
© © M~
[SESESE XS]
T
oo m
T Nm
[SESESRSRSRS
[

o

n n
seoooe

103/115

Yulei Sui August 4, 2021

A Motivating Example

Phase (d) Value-flow Vectors and Applications

104 /115

Yulei Sui August 4, 2021

A Motivating Example
Phase (d) Value-flow Vectors and Applications
[cn = tanh(W - [I;;d? - 4T 1)) |

J
)
/

[SESESESESXS]
[SESESNCRE)
: @ =)

[SESESESESXS]
[SESESECRRS)

Fully-
connected
layer

105/ 115
Yulei Sui August 4, 2021

A Motivating Example
Phase (d) Value-flow Vectors and Applications
¢, = tanh(W - [I;; d5 - d;-T; ;)

[SESESESESXS]
[SESESNCRE)

[SRSESRCE R
[SESECNCRX)

Fully-
connected
layer

106/ 115
Yulei Sui August 4, 2021

A Motivating Example
Phase (d) Value-flow Vectors and Applications
Cp = tanh(W - [I;;d5 - d5T; 1))

Yulei Sui August 4, 2021

[SESESRSWSNSY
[SESECRRE)

oo
oo

Fully-
connected
layer

Op/=

vector

exp(cn ' -a)

i1 exp(c; T-a)

Code classification:
— eap(v" - laby)
> Yievexp(vT - laby)

Code summarization:

fory€Y : Py;|v)

m

Py, ym | V) =[P | y14-1,v)

t=1

107 /115

Experimental Evaluation

Benchmarks
BASH
@ @@

hashcat
advanced
password
Fecovery
ghos! ls(‘rlpt

32 popular open-source C/C+ projects

Total Line of Instructions:4,922,162
Total Methods:17,529
Total Pointers: 2,913,748
Total Objects: 190,157
Total Number of Calls:536,033
Total IVFGNodes: 4,637,301
Total IVFGEdges: 6,531,578

*Conducted machine: Intel Xeon Gold 6132 @ 2.60GHz CPUs and 128GB of RAM (ALL finish analyzing in 272.5mins)

e 108/115
Yulei Sui August 4, 2021

Experimental Evaluation
Comparison with baselines

FLOW2VEC VS CODE2VEC

Fl-score 34.80%) +20.7%
55.50%
+20.
Recall 34.20%) 20.1%
54.30%
Precision 35.50%) +21.2%
56.70%

m CODE2VEC m FLOW2VEC

Yulei Sui August 4, 2021

FLOW2VEC VS CODE2SEQ

Fl-score | 42.50% J+16%
58.50%
Recall ‘ 41.10%) +18.8%
59.90%
Precision | 43.00% J+13:2%
57.10%

m CODE2SEQ m FLOW2VEC

109/115

Experimental Evaluation

F1-score under different lengths of code

FLOW2VEC VS CODE2VEC & CODE2SEQ

80
70
60
50
40
30

20
10 ——Flow2Vec (code classification) ——Code2Vec
——Flow2Vec (code summarization) Code2Seq

F1-SCORE

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70+

e 110/115
Yulei Sui August 4, 2021

Experimental Evaluation
Ablation analysis

Code Classification Code Summarization

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

M Flow2Vec M Intraprocedrual ® Alias-unaware ™ Symmetric B Context-insensitive

111/115
Yulei Sui August 4, 2021

A Wide Variety of Vulnerabilities

N if condition1/T) 1 FILE* f = fopen fName, "r"); 1 item->frag_next = NULL;
| if(conditionZ) 2 2 item->frag_packet = buf;
L layers[i].points.get(j)...; 3 . 3 i&iﬂ;ag\ltm&
3 4 processFile(f); 4 i Frag2(ite)
3 nts.get(3)...; 5 5 InsertNewItem(item
! | 6 E—— 6
I i i
| Curly Braces VS.|No Braces ! 7 const std: ‘e@
| 8 A

| 1 if conditionl y\ 1 FILE* f = fopen fName, "r"); 1 item->frag_next = NULL;
| i ition2 2 item->frag_packet = buf;
< 2 fflcondition2 2 Missing try-catch block! e
S 3 | layers|i .points.get(j ...; 3 processFile(f); 3 if Tislastfrag(item, iphl
& 2 e1sd) 4 . 4
s s layers i .points.get(j ...; 5 fclose(f); 5 InsertewItem(item, iphl)
| 6
¥

(a) CWE-691 (the racoon daemon in IPsec-Tools 0.8.2) (b) CWE-404 (https://cwe.mitre.org/) (c) CVE-2016-10396 (the racoon daemon in IPsec-Tools 0.8.2)

e 112/115
Yulei Sui August 4, 2021

Vulnerability Detection via Code Embedding (TOSEM ’21)

[C%))
‘.
interprocedural
CFG & VFG

Source code|

1 4

Categories

Cowezsa]| |
i

(a.2)
Tainted source,

extraction

a

3
CFG| API calls
I I
VFG (a.3)
Code slicing
g
b
33

{6.1)
Code Symbolization
Tokens = VARD

b VAR1
of) FUNO

d FUN1
l Text
E:> N Code

XFG Tokens

Vectors|

Vector

Graph
Edges

(c.2) GNN learning

(c.1)
GNN input
)| LXFG Input layer Hidden Output layer
infc‘rmaticn Graph neural networl
AXFG -
stru)ctured (c:3) —]
i ; GNNmodel| N

(a) Control and data slicing

Yulei Sui August 4, 2021

(b) Code tokens symbolization () Deep graph neural networks learning

and embedding

113/115

http://yuleisui.github.io/publications/iceccs19.pdf

Vulnerabilities from Software Assurance Reference Dataset
(SARD)
(1)

CWE119: Improper Restriction of Operations within the Bounds of a Memory Buffer. The program reads from or writes to a memory
location that is outside of the intended boundary of the memory buffer.

(2) CWE20: Improper Input Validation. The program does not validate or incorrectly validates input that can affect the control-flow or data-flow
of a program.

(3) CWE125: Out-of-bounds Read. The program reads data past the end, or before the beginning, of the intended buffer.

(4) CWE190: Integer Overflow or Wraparound. The program performs a calculation that can produce an integer overflow or wraparound, when
the logic assumes that the resulting value will always be larger than the original value.

(5) CWE22: Improper Limitation of a Pathname to a Restricted Directory. The program uses external input to construct a pathname that is
intended to identify a file or directory that is located underneath a restricted parent directory, but the software does not properly neutralize
special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory.

(6) CWE399: Resource Management Errors. It is related to improper management of system resources.
(7) CWET787: Out-of-bounds Write. The program writes data past the end, or before the beginning, of the intended buffer.

(8) CWE254: Security Features. It is related to security related operations, e.g., authentication, access control, confidentiality, cryptography, and
privilege management, etc.

(9) CWEA400: Uncontrolled Resource Consumption. The program does not properly control the allocation and maintenance of a limited
resource thereby enabling an actor to influence the amount of resources consumed, eventually leading to the exhaustion of available
resources.

(10) CWET78: Improper Neutralization of Special Elements. The vulnerable program constructs all or part of an OS command using
externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could
modify the intended OS command when it is sent to a downstream component.

e 114/115
Yulei Sui August 4, 2021

Results

IFN FPR FNR MKN ACC F1 IFN FPR FNR MKN ACC F1 IFN FPR FNR MKN ACC F1 IFN FPR FNR MKN ACC FL IFN FPR FNR MKN ACC F1
rats 001 [H60) 064 066 002 004 [H00] 004 (083 057 007 o023 [088 024 [081 066 010 (072 073 018 010 [086] 014 015 049 035

028 008 064 031 017 017 [100) 061 066
027 003 062 029 -001088] 001 -017 041 002

008 025 0.40
71 035 042

011
007

Flawfinder 013 045 068 012 053 050 010 035 075 035 010
Clang Static Analyzer 0.05 |076 029 006 060 034 002 (086 016 035 003

Infer 004 063 041 004 001 058 043 033 001 001 056 045 038 033 009 063 034 -007 057 036 -0.07 045 ﬁ
Token-based 0.33 035 069 068 048 048 064
'VGDETECTOR 069 0
Vuldecpecker 041 042 070

DeepWakong(k-GNNs)
(1) CWE119 (2) cwe20 (3) CWEL2S (4) CWE190 (5) CWE22

rars 012 [088) 013 (063 071 022 005 [89] 006 034 063 002 66 002 044 026 [098) 027 [0.71 079 042 -003 [093] 004 -014 050 008 The darker the cell (the
Flawfinder 000 045 055 000 048 041 010 032 078 012 050 012 030 [082] 014 048 051 022 034 088 021 048 048 013 021 |092) 026 056
Clang Static Analyzer 023 (075 048 023 066 048 001 077 024 001 056 030 003 [087 016 006 -003 [084 013 -005 065 017 001 [400] 001 028 052 002
Infer 024 056 052 002 061 041 002 020 053 067 016 057 -019 051 030 -020 041 033

Token-based 056 032
VGDETECTOR 056
Vuldeepecker 0.36
DeepWukong(k-GNNs)

(6) CWE399 (7) cwers7 (8) CWE2s4 (9) CWE400 (10) W78
0 01 02 03 04 05 06 07 08 NoSINEN

higher the value, the better the performance). Note that, for the FPR and FNR, we present their additive inverse here, which represents 1-FPR and
1-FNR separately. MKN denotes Informedness and Markedness. ACC denotes accuracy and F1 denotes the F1 measure score.

Static Detection of Control-Flow-Related Vulnerabilities Using Graph Embedding, 24th International Conference on Engineering of Complex Computer
Systems (ICECCS 2019)

Statically Detecting Software Vulnerabilities using Deep Graph Neural Network (TOSEM 2021)

115/115
Yulei Sui August 4, 2021

Future Research Opportunities

¢ A robust, comprehensive and learnable code representation: Introducing
path-sensitive analysis into code feature extraction.

¢ Ultra-fast learning-based bug detection: significantly boosting the
performance of conventional program analysis (e.g., data-flow, abstraction
interpretation and fuzz testing)

¢ Automated and Intelligent vulnerability detection for more interesting
clients: Fault injection and localization for cyber physical systems (CPS)

e 115/115
Yulei Sui August 4, 2021

Thanks!

Q&A

115/115
Yulei Sui August 4, 2021

