
操作系统的静态分析与缺陷检测

白家驹
清华大学操作系统实验室
https://baijiaju.github.io/

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

2

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

3

Operating system (OS)
 Operating system is the fundamental computer software

 Provide services for user-level applications
 Manage computer resources (such as memory and CPUs)
 Control hardware devices (such as USB and network devices)

4

Operating system (OS)
 Key parts in an operating system

 Filesystems: ext2, ext4, ntfs, btrfs, …
 Network stacks: ipv4, ipv6, tcp, udp, …
 Security modules: tomoyo, yama, smack, bpf, …
 Device drivers: USB, Ethernet, wireless, disk, …
 ……

5

Operating system (OS)
 Operating systems are not reliable and safe as expected

 In 2016, 523 new vulnerabilities are reported in the Android OS
 In 2017, >2000 new real bugs are reported in the Linux kernel

6

Static analysis
 Static analysis is a common method of program analysis

 Analyze program code without actual running
 High code coverage
 Easy to use and deploy

7

int func(int arg) {
 int a, b, c;
 a = 0; b = 5;
 if (arg > 0)
 b = a;
 if (arg > 5)
 c = arg / b; // DIV ZERO
 else
 c = arg / 4;
 return c;
}

Scan and analyze
the code

Bug report

Static analysis
 Key techniques in static analysis

 Inter-/intra-procedural analysis
 Flow-sensitive/-insensitive analysis
 Context-sensitive/-insensitive analysis
 Field-sensitive/-based/-insensitive analysis
 Array-sensitive/-insensitive analysis
 Alias analysis and function-pointer analysis
 ……

8

Static analysis of operating system
 Challenges

 Inter-procedural analysis for large-scale code
 Function-pointer analysis
 Identification of concurrent function pairs
 Concurrency-problem detection
 Hardware-access checking
 Code-path validation to reduce false positives
 ……

9

Our approaches
 DSAC: detecting sleep-in-atomic-context bugs

 Inter-procedural analysis for large-scale code
 Function-pointer analysis

 DCUAF: detecting concurrency use-after-free bugs
 Identification of concurrent function pairs
 Concurrency-problem detection

 SADA: detecting unsafe DMA accesses
 Hardware-access checking
 Code-path validation to reduce false positives

10

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

11

Background
 Atomic context

 A special OS kernel state
 A CPU core is monopolized to execute code without interruption
 Protect resources from concurrent accesses

 Common examples of atomic context

 Code is executed while holding a spinlock
 Code is executed in an interrupt handler

12

Motivation
 SAC (Sleep in Atomic Context) bug

 Sleeping in atomic context is not allowed
 SAC bug can occasionally cause a system hang or crash when

they are triggered at runtime

13

Z
 Z
 Z

Motivation
 Why can a SAC bug cause a hang or crash?

14

Interrupt Handler

SLEEP

acquire lock

release lock

acquire lock

release lock

acquire lock

release lock

Thread A Thread B Thread C

CPU0 is
spinning

CPU1 is
spinning

No CPU is available
to release the lock

Lock is not available,
continue spinning

State1

State2

State3 State4

State5

State5

DEADLOCK!!!

Instruction N

State1

Instruction N+1

Current Running Thread

State2

SLEEP
State3

State4
How to wake up?
KERNEL PANIC!!!

Hardware
Interrupt

Sleeping while holding a spinlock Sleeping in an interrupt handler

Motivation
 Example SAC bug

 First introduced in Linux 2.6.0 (Dec 2003)
 First fixed in Linux 2.6.36 (Oct 2010)

 15

Motivation
 Why do SAC bugs still occur in the Linux kernel?

 Determining whether an operation can sleep requires OS-specific
knowledge

 SAC bugs occasionally cause problems in real execution and are
hard to reproduce at runtime

 Inter-procedural properties and function pointers need to be
carefully considered

 16

Most known SAC bugs are found by manual
inspection or runtime failures…

Challenges
 C1: Accuracy and efficiency in code analysis

 Linux kernel code base is large and complex
 Flow-sensitive inter-procedural analysis is expensive

 C2: Handling function-pointer calls
 How to identify real functions referenced by function-pointer calls?

 C3: Dropping repeated and false bugs
 How to reduce repeated reports and false positives?

17

Techniques
 C1: Accuracy and efficiency in code analysis

=> Summary-based flow-sensitive analysis
 C2: Handling function-pointer calls

=> Connection-based function-pointer analysis
 C3: Dropping repeated and false bugs

=> Path-check method

18

T1: Summary-based analysis
 Identify code that may be executed in atomic context

 Start from each spin-lock function call
 Start from the entry of each interrupt handling function
 Maintain an interrupt handling flag, held locks and code paths

 Using function summary to reduce repeated analysis
 Function location
 Held locks and interrupt handling flag when the function is handled
 Sleep-able function call in the function
 ……

19

Example

20

Example

21

T2: Connection-based analysis
 Collect candidate functions of function-pointer call

 Handle function-pointer assignments
 Perform field-based analysis

 Drop false candidate functions using connections
 Link-information connection
 Function-call connection

22

Link-information connection
 Handle the situations for the same kernel module

23

Function-call connection
 Handle the situations for different kernel modules

24

T3: Path-check method
 Drop repeated reports

 Check the locations of analysis entry and sleep-able function call
 Drop false positives

 Check path conditions
 Check key function calls and macros

25

DSAC approach
 Integrate the three key techniques
 Detect SAC bugs in the Linux kernel
 Perform static analysis on LLVM bytecode

26

Evaluation
 Code analysis

27

Description
Linux 3.17.2 Linux 4.17

DSAC DSAC_noptr DSAC DSAC_noptr

Summary-based
analysis

Handled functions 51K 37K 65K 47K
Function summaries 79K 52K 103K 69K

Function-pointer
analysis

Function-pointer calls 14K - 17K -
Handled calls 10K 11K
Candidate functions 113K - 138K -
Identified functions 40K - 45K -

Bug detection
Found bugs 891 464 1159 615
Real bugs 805 432 1068 564

Time usage 78m 40m 97m 52m

Evaluation
 Linux 3.17.2

 Find 805 real bugs, with a false positive rate of 9.7%
 171 real bugs have been fixed in Linux 4.17
 Find more 341 real bugs using function-pointer analysis

 Linux 4.17
 Find 1068 real bugs, with a false positive rate of 7.9%
 Send 300 randomly-selected bugs to kernel developers, and 220 of

them have been confirmed
 Find more 505 real bugs using function-pointer analysis

28

Evaluation
 Bug distribution

 Overall 77% of all bugs occur in drivers
 Network, SCSI and staging drivers together have >50% of the

bugs in drivers

29

Comparison
 Coccinelle BlockLock checker [ASPLOS’11+TOCS’14]

 Both check Linux 2.6.33
 DSAC makes allyesconfig of x86, but BlockLock does not need it
 BlockLock: 37 bugs related to x86, and 26 of them are real
 DSAC: 772 bugs, and 719 of them are real
 59 real bugs found by DSAC are equivalent to 26 real bugs found by

BlockLock
 DSAC finds 660 more real bugs

 30

Conclusion
 DSAC approach to detect SAC bugs in the Linux kernel

 Summary-based flow-sensitive analysis
 Connection-based function-pointer analysis
 Path-check method

 Find 1068 new real bugs in the Linux kernel
 DSAC finds many bugs missed by existing tools
 Published in ACM TOCS’20

 Effective Detection of Sleep-in-Atomic-Context Bugs in the Linux
Kernel. Jia-Ju Bai, et al.

31

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

32

Background
 Use-after-free bugs in device drivers

 Reliability: may cause system crashes
 Security: can be exploited to attack the operating system

33

Background
 Sequential use-after-free bug

 Concurrency use-after-free bug

34

1. void DriverFunc1(struct device *pdev) {
2. kfree(pdev->buf);
3. pdev->buf = kmalloc(...)
4. pdev->buf->last = NULL;
5. }

1. void DriverFunc2(struct device *pdev) {
2. spin_lock(...);
3. pdev->buf->first = NULL;
4. spin_unlock(...);
5. }

Thread 1 Thread 2

1. void DriverExit(struct device *pdev) {
2. kfree(pdev->buf);
3. pdev->num = 0;
4. pdev->buf->last = NULL;
5. }

Thread 1

Example
 Linux r8a66597 USB driver

35

FILE: linux-4.19/drivers/usb/host/r8a66597-hcd.c
2304. static const struct hc_driver r8a66597_hc_driver = {

2320. .urb_enqueue = r8a66597_urb_enqueue,

2322. .endpoint_disable = r8a66597_endpoint_disable,

2336. }

Lifetime: Jul. 2007 ~ Dec.2018
Fix Commit: c85400f886e3

FILE: linux-4.19/drivers/usb/host/r8a66597-hcd.c
1885. static int r8a66597_urb_enqueue(...) {

1895. spin_lock_irqsave(&r8a66597->lock, flags);

1905. if (!hep->hcpriv) // READ

1951. spin_unlock_irqrestore(&r8a66597->lock, flags);
1952. return ret;
1953. };

FILE: linux-4.19/drivers/usb/host/r8a66597-hcd.c
1980. static void r8a66597_endpoint_disable(...) {

1995. kfree(hep->hcpriv); // FREE

2000. spin_lock_irqsave(&r8a66597->lock, flags);

2010. spin_unlock_irqrestore(&r8a66597->lock, flags);
2011. }

Study of Linux kernel commits
 Use-after-free commits

 Jan.2016 ~ Dec.2018 (3 years)

36

Time Commits Drivers Concurrency Tool use

2016 (Jan - Dec) 186 111 42 (38%) 26

2017 (Jan - Dec) 478 205 87 (42%) 49

2018 (Jan - Dec) 285 145 66 (46%) 52

Total 949 461 195 (42%) 127

42% of driver commits fixing use-after-free bugs
involve concurrency

Study of Linux kernel commits
 Tool use

 Tools mentioned in driver commits

37

Tool use KASAN Syzkaller Coverity Coccinelle LDV

Type Runtime Runtime Static Static Static

Commit 92 28 4 2 1

Concurrency 38 18 0 0 0

It is important to explore static analysis to detect
concurrency use-after-free bugs in device drivers!

Challenges
 Identify driver functions that can be concurrently executed

 Poor documentation about concurrency
 Many functions defined in the driver code

 Accuracy and efficiency of code analysis
 Large size of the Linux driver code base
 Many function calls across different source files

 38

Approach
 DCUAF

 Automated and effective approach of detecting concurrency
use-after-free bugs in device drivers

 LLVM-based static analysis

39

Approach
 Basic idea

 Step1: Use a local-global strategy to identify concurrent
 function pairs from driver source code

 Step2: Use a summary-based lockset analysis to detect
 concurrency use-after-free bugs.

40

Local-global strategy
 Driver interfaces are the entries of a device driver

 Kernel-driver interfaces
 Interrupt handler interfaces

 Driver concurrency is often determined by the concurrent
execution of driver interfaces

41

Local-global strategy
 Examples

 Linux dl2k and ne2k-pci drivers

> “.ndo_start_xmit” can be concurrently executed with “interrupt handler”
> “.ndo_open” is never concurrently executed with “.ndo_close”

42

interrupt_handler interrupt_handler

Local-global strategy
 How to extract concurrent function pairs?

 Local stage: analyze the source code of each driver
 Global stage: statistically analyze the local results of all drivers

43

Local stage
 S1: identify possible concurrent function pairs

 Compare lock-acquiring function calls
 S2: drop possibly false concurrent function pairs

 Collect “ancestors” of the two functions in call graph
 Drop pairs of functions that have a common “ancestor”

 S3: extract local concurrent interface pairs
 Identify and record driver interface assignments related to concurrent

function pairs

44

Global stage
 S1: gather local concurrent interface pairs of all drivers
 S2: statistically extract global concurrent interface pairs

 Ratio: concurrent pairs / all pairs

 S3: identify concurrent function pairs in each driver

 45

Driver Interface 1 Driver Interface 2 Pair Concurrent
spi_driver.probe spi_driver.remove 227 3

file_operations.open file_operations.close 462 3

hc_driver.urb_enqueue hc_driver.endpoint_disable 16 9

Interrupt handler snd_pcm_ops.trigger 49 25

Summary-based lockset analysis
 Context-sensitive and flow-sensitive lockset analysis

 Maintain locksets
 Field-based alias analysis

 Identify the same locks
 Summary-based analysis

 Reuse the results of already analyzed functions
 Procedure

 S1: collect the lockset of each variable access
 S2: check the held locksets of the variable accesses to find bugs

 46

Evaluation
 Local-global strategy

47

Description Linux 3.14 Linux 4.19

Code handling
Source files (.c) 7957 13100
Source code lines 5.1M 7.9M

Local stage
Dropped function pairs 61.4K 99.8K
Remaining function pairs 40.7K 67.8K

Global stage
Global concurrent interface pairs 694 1497
Concurrent function pairs 15.6K 69.5K
Time usage 15m 18m

		Description

		Linux 3.14

		Linux 4.19

		Code handling

		Source files (.c)

		7957

		13100

		

		Source code lines

		5.1M

		7.9M

		Local stage

		Dropped function pairs

		61.4K

		99.8K

		

		Remaining function pairs

		40.7K

		67.8K

		Global stage

		Global concurrent interface pairs

		694

		1497

		

		Concurrent function pairs

		15.6K

		69.5K

		Time usage

		15m

		18m

Evaluation
 Bug detection

48

Description Linux 3.14 Linux 4.19
Detected (real / all) 526 / 559 640 / 679
Confirmed / reported - 95 / 130
Time usage 9m 10m

Some confirmed bugs:
• https://github.com/torvalds/linux/commit/7418e6520f22
• https://github.com/torvalds/linux/commit/2ff33d663739
• https://github.com/torvalds/linux/commit/c85400f886e3

		Description

		Linux 3.14

		Linux 4.19

		Detected (real / all)

		526 / 559

		640 / 679

		Confirmed / reported

		-

		95 / 130

		Time usage

		9m

		10m

Evaluation
 False positives

 Alias analysis may incorrectly identify the same locks
 Flow-sensitive analysis does not validate path conditions
 ……

 False negatives
 Function-pointer analysis is not performed
 Other kinds of synchronization are neglected
 ……

49

Conclusion
 Concurrency use-after-free bugs are often hard to detect
 DCUAF: automated and effective

 Local-global strategy of extracting concurrent function pairs
 Summary-based lockset analysis

 Find hundreds of new real bugs in Linux device drivers
 Published in USENIX ATC’19

 Effective Static Analysis of Concurrency Use-After-Free Bugs in
Linux Device Drivers. Jia-Ju Bai, et al.

50

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

51

Background
 DMA is widely used in modern device drivers

 Direct data transfer between hardware registers and system memory
 Perform data transfer without CPU involvement

52

DMA access
 Basic steps

 S1: Create a DMA buffer
 S2: Perform a DMA access like a regular variable access
 Read a DMA buffer: data = dma_buf->data;
 Write a DMA buffer: dma_buf->data = data;
 S3: Delete a DMA buffer

53

DMA type
 Streaming DMA buffer

 It is asynchronously available to both the CPU and hardware device
 The driver needs to explicitly synchronize the data between

hardware registers and CPU cache
 Each DMA access is relatively cheap

 Coherent DMA buffer
 It is simultaneously available to both the CPU and hardware device
 The driver does not need to explicitly synchronize the data between

hardware registers and CPU cache
 Each DMA access is relatively expensive

54

Security risks of DMA access
 Streaming DMA access

 After a streaming DMA buffer is created, the driver should not access
the content of this buffer, until this buffer is unmapped

 The driver is allowed to access buffer content during synchronization
with hardware registers and CPU cache

 Security risks of violations
 Inconsistent DMA access
 Data inconsistency between hardware registers and CPU cache

55

Example
 Inconsistent DMA access in the Linux rtl8192ce driver

 Introduced in Linux 4.4 (released in Jan. 2016)
 Fixed in Oct. 2020 by us

56

FILE: linux-5.6/drivers/net/wireless/realtek/rtlwifi/rtl8192ce/trx.c
522. void rtl92ce_tx_fill_cmddesc(...) {

 // Streaming DMA mapping
531. dma_addr_t mapping = pci_map_single(..., skb->data, ...);

535. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data);
536 fc = hdr->frame_control; // Inconsistent DMA access!

584. }

Security risks of DMA access
 Coherent DMA access

 The hardware device can be untrusted, and thus can write bad data
into coherent DMA buffers, which are used by the driver

 The driver should perform correct validation of the data from DMA
buffers before using the data

 Security risks of violations
 Unchecked DMA access
 Security bugs, such as buffer overflow and invalid-pointer access

57

Example
 Unchecked DMA access in the Linux vmxnet3 driver

 Introduced in Linux 3.16 (released in Aug. 2014)
 Fixed in Jun. 2020 by us

58

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_ethtool.c
693. static int vmxnet3_get_rss(...) {

696. struct UPT1_RSSConf *rssConf = adapter->rss_conf;
697. unsigned int n = rssConf->indTableSize;

704. while (n--)
705. p[n] = rssConf->indTable[n]; // Possible buffer overflow
706. return 0;
707. }

FILE: linux-5.6/drivers/net/vmxnet3/upt1_defs.h
80. struct UPT1_RSSConf {
81. u16 hashType;

86. u8 indTable[UPT1_RSS_MAX_IND_TABLE_SIZE]; // Bound is 128
87. }

FILE: linux-5.6/drivers/net/vmxnet3/vmxnet3_drv.c
3240. static int vmxnet3_probe_device(...) {

 // Coherent DMA allocation
3373. adapter->rss_conf = dma_alloc_coherent(...);

3531. }

Unsafe DMA access
 Basic rules

59

dma_addr = dma_map_single(buf)

dma_sync_single_for_cpu(dma_addr)

dma_sync_single_for_device(dma_addr)

dma_unmap_single(dma_addr)

Accessing the content of
buf is forbidden!

Accessing the content of
buf is allowed!

Streaming DMA access

dma_buf = dma_alloc_coherent(...)

Data in dma_buf should
be correctly validated!

Coherent DMA access

Accessing the content of
buf is forbidden!

Use data in dma_buf

Challenges of detecting unsafe DMA access
 C1: Identifying DMA access

 Each DMA access is implemented as a regular variable access,
without calling specific interface functions

 DMA creation and DMA access often have no explicit execution
order from static code observation, namely in a broken control flow

 C2: Checking the safety of DMA access
 Accuracy and efficiency of analyzing large OS code

 C3: Dropping false positives
 Validating code-path feasibility is difficult and expensive

60

Key techniques
 C1: Identifying DMA access

 Field-based alias analysis to effectively identify DMA access

 C2: Checking the safety of DMA accesses
 Flow-sensitive and pattern-based analysis to accurately and

efficiently check the safety of DMA access
 C3: Dropping false positives

 Efficient code-path validation method to drop false positives and
reduce the overhead of using a SMT solver

61

DMA-access identification
 S1: Handling DMA-buffer creation

 Identify DMA-creation function calls
 Collect the information about their return variables, including variable

names, data structure types and fields
 S2: Identifying DMA access

 Check each variable access in the driver
 If variable name or data structure information matches the collected

information, the access is identified to be a DMA access
 Alias analysis is useful to handling variable assignments

 Intra-procedural, flow-insensitive and Andersen-style alias analysis

62

DMA-access identification
 Example

63

FILE: linux-5.6/drivers/isdn/hardware/mISDN/hfcpci.c
 450. static int receive_dmsg(...) {

 461. df = &(hc->hw.fifos)->d_chan.d_rx; // DMA access

 527. }

1986. static int setup_hw(...) {

 // Coherent DMA allocation
2008. buffer = pci_alloc_consistent(...);

2015. hc->hw.fifos = buffer;

2043. }

Alias

Record data structure type and field

Match the recorded data structure type and field

DMA-access safety checking
 Checking streaming DMA access

 Four patterns about DMA operations
 Forward and backward flow-sensitive analysis

64

Pattern 1

dma_addr = dma_map_single(buf) // Start

Read or write the content of buf // Report!
Forward flow-sensitive analysis

Pattern 2

dma_sync_single_for_device(dma_addr) // Start

Read or write the content of buf // Report!
Forward flow-sensitive analysis

Pattern 3

Read or write the content of buf // Report!

dma_unmap_single(dma_addr) // Start
Backward flow-sensitive analysis

Pattern 4

Read or write the content of buf // Report!

dma_sync_single_for_cpu(dma_addr) // Start
Backward flow-sensitive analysis

DMA-access safety checking
 Checking coherent DMA access

 Flow-sensitive taint analysis to identify DMA-affected operations
 Three patterns about security problems

65

FILE: linux-5.6/drivers/net/wireless/intel/iwlwifi/pcie/rx.c
1693. static u32 iwl_pcie_int_cause_ict(...) {

1714. do {

1722. read = trans_pcie->ict_tbl[...];

1725. } while (read); // Possible bug

1743. }

2054. int iwl_pcie_alloc_ict(...) {

 // Coherent DMA allocation
2058. trans_pcie->ict_tbl = dma_alloc_coherent(...);

2071. }

Pattern 1: Infinite loop polling

FILE: linux-5.6/drivers/net/wireless/intel/ipw2x00/ipw2100.c
2661. static void __ipw2100_rx_process(...) {

 // MASK is 0x0f
2701. frame_type = sq->drv[i].status_fields & MASK;

 // Possible bug
2710. IPW_DEBUG_RX(..., frame_types[frame_type], ...)

2765. }

4318. static int status_queue_allocate(...) {

 // Coherent DMA allocation
4325. q->drv = pci_zalloc_consistent(...);

4334. }

Pattern 2: Buffer overflow

FILE: linux-5.6/drivers/net/ethernet/socionext/netsec.c
 931. static int netsec_process_rx(...) {

 948. struct netsec_de *de = dring->vaddr + ...;

 971. pkt_len = de->buf_len_info >> 16;

 // Possible bug, as xdp.data is a pointer
1003. xdp.data_end = xdp.data + pkt_len;

1059. }

1241. static int netsec_alloc_dring(...) {
 // Coherent DMA allocation
1245. dring->vaddr = dma_alloc_coherent(...);

1259. }

Pattern 3: Invalid pointer access

Code-Path Validation
 S1: Getting path constraints

 Translate each instruction in the code path to an Z3 constraint
 Example: “a = b + c” -> “a == b + c”

 S2: Adding additional constraints
 Identify and add constraints that can trigger security bugs
 Example: For buffer overflow, add “frame > MAX_SIZE” when frame

is an index to access an array whose bound is MAX_SIZE

 S3: Solving all constraints
 If the constraints cannot be satisfied, the possible unsafe DMA

access is identified as a false positive and is dropped
66

Approach
 SADA (Static Analysis of DMA Access)

 Integrate the three key techniques
 Statically detect unsafe DMA access in device drivers
 LLVM-based static analysis

67

SADA

Linux Driver
Source Files

Clang
Compiler

Information
Collector

Access
Detector

Access
Checker

Path
Validator

LLVM Bytecode DMA-Buffer
Information DMA Accesses Possible Unsafe

DMA Accesses
Final Unsafe

DMA Accesses

Evaluation
 Detection of unsafe DMA accesses

68

Description Linux 5.6

Code handling
Source files (.c) 14.6K
Source code lines 8.8M

DMA-access
identification

Encountered DMA-buffer creation 2,781
DMA buffers in data structure fields 2,074
Identified DMA accesses 28,732

DMA-access
checking

Unsafe DMA accesses (real / all) 284 / 321
Inconsistent DMA accesses (real / all) 123 / 131
Unchecked DMA accesses (real / all) 161 / 190

Time usage
DMA-access identification 62m
DMA-access checking 208m
Total time 270m

		Description

		Linux 5.6

		Code handling

		Source files (.c)

		14.6K

		

		Source code lines

		8.8M

		DMA-access identification

		Encountered DMA-buffer creation

		2,781

		

		DMA buffers in data structure fields

		2,074

		

		Identified DMA accesses

		28,732

		DMA-access

checking

		Unsafe DMA accesses (real / all)

		284 / 321

		

		Inconsistent DMA accesses (real / all)

		123 / 131

		

		Unchecked DMA accesses (real / all)

		161 / 190

		Time usage

		DMA-access identification

		62m

		

		DMA-access checking

		208m

		

		Total time

		270m

Evaluation
 123 inconsistent DMA accesses

 Direct access after DMA creation: 108
 Incorrect DMA synchronization: 15

 161 unchecked DMA accesses
 Buffer overflow: 121
 Invalid-pointer access: 36
 Infinite loop polling: 4

 105 of the 284 real unsafe DMA accesses have been
confirmed by driver developers

69

Limitations
 False positives

 The current alias analyses is simple and not accurate enough
 The path validation can make mistakes in complex cases
 ……

 False negatives
 Lack the analysis of function-pointer calls
 Neglect other patterns of unsafe DMA accesses
 ……

70

Conclusion
 DMA is popular in modern device drivers but can introduce

security risks in practice
 SADA: static detection of unsafe DMA accesses

 Field-based alias analysis
 Flow-sensitive and pattern-based analysis
 Efficient code-path validation method

 Find 284 real unsafe DMA accesses in Linux 5.6
 Published in USENIX Security’21

 Static Detection of Unsafe DMA Accesses in Device Drivers. Jia-Ju
Bai, et al.

71

Outline
1. Introduction to operating system and static analysis
2. Work1: detecting sleep-in-atomic-context bugs
3. Work2: detecting concurrency use-after-free bugs
4. Work3: detecting unsafe DMA accesses
5. Our ongoing works and discussion

72

Ongoing works
 Static analysis

 Efficient alias analysis for large-scale software
 Alias-aware bug detection in OS kernels
 Deadlock detection in OS kernels
 ……

 Dynamic analysis
 Concurrency fuzzing for data-race detection
 Semantics-aware fuzzing of DBMS
 Fuzzing distributed systems software
 ……

73

Research on systems software analysis
 Program analysis techniques

 Static analysis
 Dynamic analysis

 Domain-specific knowledge of specific systems software
 OS kernels
 Distributed systems software
 Network protocols
 ……

 Limitations of existing generic/specific approaches
 Characteristic techniques

74

谢谢聆听！
欢迎加入系统软件可靠性研究！

白家驹
清华大学操作系统实验室
https://baijiaju.github.io/

	操作系统的静态分析与缺陷检测
	Outline
	Outline
	Operating system (OS)
	Operating system (OS)
	Operating system (OS)
	Static analysis
	Static analysis
	Static analysis of operating system
	Our approaches
	Outline
	Background
	Motivation
	Motivation
	Motivation
	Motivation
	Challenges
	Techniques
	T1: Summary-based analysis
	Example
	Example
	T2: Connection-based analysis
	Link-information connection
	Function-call connection
	T3: Path-check method
	DSAC approach
	Evaluation
	Evaluation
	Evaluation
	Comparison
	Conclusion
	Outline
	Background
	Background
	Example
	Study of Linux kernel commits
	Study of Linux kernel commits
	Challenges
	Approach
	Approach
	Local-global strategy
	Local-global strategy
	Local-global strategy
	Local stage
	Global stage
	Summary-based lockset analysis
	Evaluation
	Evaluation
	Evaluation
	Conclusion
	Outline
	Background
	DMA access
	DMA type
	Security risks of DMA access
	Example
	Security risks of DMA access
	Example
	Unsafe DMA access
	Challenges of detecting unsafe DMA access
	Key techniques
	DMA-access identification
	DMA-access identification
	DMA-access safety checking
	DMA-access safety checking
	Code-Path Validation
	Approach
	Evaluation
	Evaluation
	Limitations
	Conclusion
	Outline
	Ongoing works
	Research on systems software analysis
	谢谢聆听！�欢迎加入系统软件可靠性研究！

